当前位置: X-MOL 学术ACS Appl. Bio Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Accelerated Outgrowth of Neurites on Graphene Oxide-Based Hybrid Electrospun Fibro-Porous Polymeric Substrates
ACS Applied Bio Materials ( IF 4.6 ) Pub Date : 2020-03-10 , DOI: 10.1021/acsabm.0c00026
Sudhin Thampi 1, 2 , Anoopkumar Thekkuveettil 3 , Vignesh Muthuvijayan 1 , Ramesh Parameswaran 2
Affiliation  

Fabrication of a surface-engineered electrospun scaffold having biomimetic properties like the extracellular matrix (ECM) is essential for neural tissue engineering. An electroconductive and elastomeric scaffold with aligned fibers acting as a substrate may have a great impact on the directional outgrowth of neurites. In this study, we have electrospun electrically conductive, polyurethane-based elastomeric and topographically aligned fibro-porous neural scaffolds. Adhesive proteins of the ECM are documented to have an important role in controlling neuronal cell behavior, including cell adhesion, proliferation, and neurite outgrowth. These bio-adhesion proteins or nanomaterials mimicking their action, if used for surface modification of neural scaffolds, may have the potential to accelerate the nerve repair process. Thus, electrospun scaffolds fabricated were surface-engineered using a unique and modified single-step electrospraying technique to coat the scaffold surface with an exploratory bio-adhesion agent, a thin layer of graphene oxide (GO) films. The study was then carried out to determine if the GO-coated electrospun electroconductive polycarbonate urethane (PCU) substrate can improve the bio-interface attributes of these scaffolds or may alter the neurite outgrowth of PC-12 cells like any other bio-adhesion proteins. Therefore, the hybrid scaffolds with GO coatings were compared with similar scaffolds coated with poly-l-lysine (PLL) for neural cell adhesion, proliferation, and neurite extension. Neurite outgrowth studies showed that although the average neurite length was comparable on both GO- and PLL-coated surfaces, the length profile of neurites, when categorized based on length, showed an increased number of lengthier neurites on the GO-coated hybrid scaffolds. In particular, the study brings out an innovative surface engineering technique for the coating of GO on polymeric scaffolds. It may be further put together in designing of hybrid surfaces with nanotopographical biophysical cues on three-dimensional neural scaffolds, which in turn may stimulate an accelerated neuronal regeneration via providing an enhanced ECM like milieu.

中文翻译:

基于氧化石墨烯的混合电纺纤维多孔聚合物基材上神经突的加速生长

制造具有仿生特性(如细胞外基质 (ECM))的表面工程静电纺丝支架对于神经组织工程至关重要。具有作为基底的对齐纤维的导电和弹性支架可能对神经突的定向生长产生很大影响。在这项研究中,我们拥有电纺导电、聚氨酯基弹性体和地形对齐的纤维多孔神经支架。ECM 的粘附蛋白被证明在控制神经元细胞行为方面具有重要作用,包括细胞粘附、增殖和神经突生长。这些模仿其作用的生物粘附蛋白或纳米材料,如果用于神经支架的表面修饰,可能具有加速神经修复过程的潜力。因此,使用独特且经过改进的单步电喷涂技术对制造的电纺支架进行表面工程化,以在支架表面涂上一层探索性的生物粘附剂,即氧化石墨烯 (GO) 薄膜的薄层。然后进行研究以确定 GO 涂层的电纺导电聚碳酸酯聚氨酯 (PCU) 基板是否可以改善这些支架的生物界面属性,或者是否可以像任何其他生物粘附蛋白一样改变 PC-12 细胞的神经突生长。因此,将具有 GO 涂层的混合支架与涂有聚 然后进行研究以确定 GO 涂层的电纺导电聚碳酸酯聚氨酯 (PCU) 基板是否可以改善这些支架的生物界面属性,或者是否可以像任何其他生物粘附蛋白一样改变 PC-12 细胞的神经突生长。因此,将具有 GO 涂层的混合支架与涂有聚 然后进行研究以确定 GO 涂层的电纺导电聚碳酸酯聚氨酯 (PCU) 基板是否可以改善这些支架的生物界面属性,或者是否可以像任何其他生物粘附蛋白一样改变 PC-12 细胞的神经突生长。因此,将具有 GO 涂层的混合支架与涂有聚l-赖氨酸 (PLL) 用于神经细胞粘附、增殖和神经突延伸。神经突生长研究表明,尽管 GO 和 PLL 涂层表面的平均神经突长度相当,但当基于长度分类时,神经突的长度分布显示 GO 涂层混合支架上更长的神经突数量增加。特别是,该研究提出了一种创新的表面工程技术,用于在聚合物支架上涂覆 GO。它可以进一步用于在三维神经支架上设计具有纳米拓扑生物物理线索的混合表面,这反过来可以通过提供增强的 ECM 样环境来刺激加速的神经元再生。
更新日期:2020-04-23
down
wechat
bug