当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Scalable Method for Thickness and Lateral Engineering of 2D Materials.
ACS Nano ( IF 17.1 ) Pub Date : 2020-03-10 , DOI: 10.1021/acsnano.0c00836
Jianbo Sun 1 , Giacomo Giorgi 2, 3 , Maurizia Palummo 4, 5 , Peter Sutter 6 , Maurizio Passacantando 7, 8 , Luca Camilli 1, 4
Affiliation  

The physical properties of two-dimensional (2D) materials depend strongly on the number of layers. Hence, methods for controlling their thickness with atomic layer precision are highly desirable, yet still too rare, and demonstrated for only a limited number of 2D materials. Here, we present a simple and scalable method for the continuous layer-by-layer thinning that works for a large class of 2D materials, notably layered germanium pnictides and chalcogenides. It is based on a simple oxidation/etching process, which selectively occurs on the topmost layers. Through a combination of atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction experiments we demonstrate the thinning method on germanium arsenide (GeAs), germanium sulfide (GeS), and germanium disulfide (GeS2). We use first-principles simulation to provide insights into the oxidation mechanism. Our strategy, which could be applied to other classes of 2D materials upon proper choice of the oxidation/etching reagent, supports 2D material-based device applications, e.g., in electronics or optoelectronics, where a precise control over the number of layers (hence over the material's physical properties) is needed. Finally, we also show that when used in combination with lithography, our method can be used to make precise patterns in the 2D materials.

中文翻译:

二维材料厚度和横向工程的可扩展方法。

二维(2D)材料的物理特性在很大程度上取决于层数。因此,非常需要以原子层精度控制其厚度的方法,但仍然太少了,并且仅针对有限数量的2D材料进行了演示。在这里,我们为连续的逐层薄化提供了一种简单且可扩展的方法,该方法适用于大量的2D材料,尤其是分层的锗锗化物和硫属化物。它基于简单的氧化/蚀刻过程,选择性地发生在最顶层。通过结合原子力显微镜,X射线光电子能谱,拉曼光谱和X射线衍射实验,我们证明了砷化锗(GeAs),硫化锗(GeS)和二硫化锗(GeS2)的稀化方法。我们使用第一性原理模拟来提供有关氧化机理的见解。我们的策略,这可以应用到其它类在氧化/蚀刻试剂的适当选择2D材料的,支持基于材料二维器件的应用,例如,在电子或光电子学,其中超过层数精确控制(因此过材料的物理特性)。最后,我们还表明,当与光刻技术结合使用时,我们的方法可用于在2D材料中制作精确的图案。需要精确控制层数(因此可以控制材料的物理特性)的地方。最后,我们还表明,当与光刻技术结合使用时,我们的方法可用于在2D材料中制作精确的图案。需要精确控制层数(因此可以控制材料的物理特性)的地方。最后,我们还表明,当与光刻技术结合使用时,我们的方法可用于在2D材料中制作精确的图案。
更新日期:2020-03-10
down
wechat
bug