当前位置: X-MOL 学术Planta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering salinity tolerance in plants: progress and prospects
Planta ( IF 3.6 ) Pub Date : 2020-03-09 , DOI: 10.1007/s00425-020-03366-6
Shabir Hussain Wani 1 , Vinay Kumar 2, 3 , Tushar Khare 2 , Rajasheker Guddimalli 4 , Maheshwari Parveda 4 , Katalin Solymosi 5 , Penna Suprasanna 6 , P B Kavi Kishor 7
Affiliation  

There is a need to integrate conceptual framework based on the current understanding of salt stress responses with different approaches for manipulating and improving salt tolerance in crop plants. Soil salinity exerts significant constraints on global crop production, posing a serious challenge for plant breeders and biotechnologists. The classical transgenic approach for enhancing salinity tolerance in plants revolves by boosting endogenous defence mechanisms, often via a single-gene approach, and usually involves the enhanced synthesis of compatible osmolytes, antioxidants, polyamines, maintenance of hormone homeostasis, modification of transporters and/or regulatory proteins, including transcription factors and alternative splicing events. Occasionally, genetic manipulation of regulatory proteins or phytohormone levels confers salinity tolerance, but all these may cause undesired reduction in plant growth and/or yields. In this review, we present and evaluate novel and cutting-edge approaches for engineering salt tolerance in crop plants. First, we cover recent findings regarding the importance of regulatory proteins and transporters, and how they can be used to enhance salt tolerance in crop plants. We also evaluate the importance of halobiomes as a reservoir of genes that can be used for engineering salt tolerance in glycophytic crops. Additionally, the role of microRNAs as critical post-transcriptional regulators in plant adaptive responses to salt stress is reviewed and their use for engineering salt-tolerant crop plants is critically assessed. The potentials of alternative splicing mechanisms and targeted gene-editing technologies in understanding plant salt stress responses and developing salt-tolerant crop plants are also discussed.

中文翻译:

植物工程耐盐性:进展与前景

有必要将基于当前对盐胁迫响应的理解的概念框架与操纵和提高作物耐盐性的不同方法相结合。土壤盐分严重限制了全球作物生产,给植物育种者和生物技术人员带来了严峻挑战。用于增强植物耐盐性的经典转基因方法是通过增强内源性防御机制,通常通过单基因方法,通常涉及增强相容的渗透物、抗氧化剂、多胺的合成,维持激素稳态,修饰转运蛋白和/或调节蛋白,包括转录因子和可变剪接事件。偶尔,调节蛋白或植物激素水平的遗传操作赋予耐盐性,但所有这些都可能导致植物生长和/或产量的不希望的减少。在这篇综述中,我们介绍并评估了用于工程作物耐盐性的新颖和前沿方法。首先,我们介绍了有关调节蛋白和转运蛋白重要性的最新发现,以及它们如何用于增强农作物的耐盐性。我们还评估了卤生物群落作为基因库的重要性,这些基因库可用于工程糖类作物的耐盐性。此外,还回顾了 microRNA 作为关键转录后调节因子在植物对盐胁迫的适应性反应中的作用,并对其在工程耐盐作物植物中的用途进行了严格评估。
更新日期:2020-03-09
down
wechat
bug