当前位置: X-MOL 学术Int. J. Heat Mass Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Comparative study of surface temperature of lithium-ion polymer cells at different discharging rates by infrared thermography and thermocouple
International Journal of Heat and Mass Transfer ( IF 5.0 ) Pub Date : 2020-06-01 , DOI: 10.1016/j.ijheatmasstransfer.2020.119595
M.F.H. Rani , Z.M. Razlan , A.B. Shahriman , Z. Ibrahim , W.K. Wan

Abstract The objective of this study was to compare the surface temperature of lithium-ion polymer cells at different discharging rates by infrared thermography and thermocouple measurement. The cells were discharged by using a battery workstation at discharging rates of 2.0 A, 4.0 A, 6.0 A, 8.0 A, and 10.0 A in a controlled testing condition. This study focused on surface temperature distribution, maximum surface temperature, and temperature rise evolution. Higher discharging rate generates more heat in LiPo cells, which causes larger temperature gradient, higher maximum surface temperature, and higher temperature rise. During the discharging process, non-uniformity spatial distribution of LiPo cells was observed. No critical surface temperature was observed when reaching towards the end of discharging process as the surface temperature distribution managed to become spatially uniform. Most of the maximum surface temperatures were spotted at the lower part of the LiPo cells. In addition, the captured infrared (IR) images found that the temperature rises rapidly at higher discharging rates. In comparison, surface temperature measurement by infrared thermography provided higher accuracy than thermocouple. The findings of this study provide evidences in better development of battery thermal management systems with consideration of surface temperature distribution and temperature rise.

中文翻译:

不同放电倍率下锂离子聚合物电池表面温度的红外热像和热电偶对比研究

摘要 本研究的目的是通过红外热成像和热电偶测量比较不同放电率下锂离子聚合物电池的表面温度。在受控测试条件下,使用电池工作站以 2.0 A、4.0 A、6.0 A、8.0 A 和 10.0 A 的放电速率对电池进行放电。本研究侧重于地表温度分布、最高地表温度和温升演变。更高的放电率会在 LiPo 电池中产生更多的热量,从而导致更大的温度梯度、更高的最高表面温度和更高的温升。在放电过程中,观察到 LiPo 电池的非均匀空间分布。当接近放电过程结束时,没有观察到临界表面温度,因为表面温度分布在空间上变得均匀。大多数最高表面温度出现在 LiPo 电池的下部。此外,捕获的红外 (IR) 图像发现,在更高的放电速率下,温度会迅速升高。相比之下,红外热像仪测量表面温度的精度高于热电偶。本研究的结果为更好地开发考虑表面温度分布和温升的电池热管理系统提供了证据。捕获的红外 (IR) 图像发现,在较高的放电速率下,温度会迅速升高。相比之下,红外热像仪测量表面温度的精度高于热电偶。本研究的结果为更好地开发考虑表面温度分布和温升的电池热管理系统提供了证据。捕获的红外 (IR) 图像发现,在较高的放电速率下,温度会迅速升高。相比之下,红外热像仪测量表面温度的精度高于热电偶。本研究的结果为更好地开发考虑表面温度分布和温升的电池热管理系统提供了证据。
更新日期:2020-06-01
down
wechat
bug