当前位置: X-MOL 学术Mater. Today › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D knitted energy storage textiles using MXene-coated yarns
Materials Today ( IF 24.2 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.mattod.2020.02.005
Ariana Levitt , Dylan Hegh , Patrick Phillips , Simge Uzun , Mark Anayee , Joselito M. Razal , Yury Gogotsi , Genevieve Dion

Abstract Textile-based energy storage devices offer an exciting replacement for bulky and uncomfortable batteries in commercial smart garments. Fiber and yarn-based supercapacitors, currently dominating research in this field, have demonstrated excellent performance below ∼4 cm in length, but suffer at longer lengths due to increased resistance. Herein, a new architecture of wearable energy storage devices, 3D knitted supercapacitors, is designed and prototyped with the intention of exploiting the architecture of a knit textile to improve the performance of long yarn electrodes. While Computer-Aided Design (CAD) knitting is a ubiquitous technology for producing textiles, knitted energy storage devices have been largely unexplored due to the need for meters of highly conductive yarn electrodes that meet the strenuous strength and flexibility requirements for CAD knitting. MXenes, a family of solution processable and conductive two-dimensional (2D) materials, have been realized as inks, slurries, pastes, and now dyes for the development of on-paper, on-plastic, and on-textile microsupercapacitor electrodes. In this work, Ti3C2Tx MXene was adopted as an active material for coating meters of commercial natural and synthetic yarns, enabling the production of knitted planar microsupercapacitors. The impact on electrochemical performance of knit structure and geometry was systematically studied in an attempt to produce energy storing textiles with power and energy densities that can be used for practical applications. The resulting energy storing textiles demonstrate high capacitance, up to 707 mF cm−2 and 519 mF cm−2 at 2 mV s−1 in 1 M H3PO4 and PVA-H3PO4 gel electrolyte, respectively, and excellent cycling stability over 10,000 cycles. This work represents an important step towards the mass production of MXene-based conductive yarns and 3D knitted energy storage devices and demonstrates how knit structure plays a significant role on device performance.

中文翻译:

使用 MXene 涂层纱线的 3D 针织储能纺织品

摘要 基于纺织品的储能设备为商用智能服装中笨重且不舒服的电池提供了令人兴奋的替代品。目前在该领域占据主导地位的基于纤维和纱线的超级电容器在长度低于 4 cm 时表现出优异的性能,但由于电阻增加,因此在更长的长度下会受到影响。在此,设计并制作了一种新型可穿戴储能设备架构,即 3D 针织超级电容器,旨在利用针织纺织品的架构来提高长纱线电极的性能。虽然计算机辅助设计 (CAD) 针织是一种无处不在的纺织品生产技术,由于需要数米的高导电纱线电极来满足 CAD 针织的强度和柔韧性要求,因此针织储能设备在很大程度上尚未得到探索。MXenes 是一系列可溶液加工和导电的二维 (2D) 材料,已实现为墨水、浆液、糊剂和现在的染料,用于开发纸上、塑料上和纺织品上的微型超级电容器电极。在这项工作中,Ti3C2Tx MXene 被用作一种活性材料,用于涂覆商用天然和合成纱线的仪表,从而能够生产针织平面微型超级电容器。系统研究了针织结构和几何形状对电化学性能的影响,以尝试生产具有可用于实际应用的功率和能量密度的储能纺织品。由此产生的储能纺织品表现出高电容,在 1 M H3PO4 和 PVA-H3PO4 凝胶电解质中在 2 mV s-1 时分别高达 707 mF cm-2 和 519 mF cm-2,以及超过 10,000 次循环的出色循环稳定性。这项工作代表了大规模生产基于 MXene 的导电纱线和 3D 针织储能设备的重要一步,并展示了针织结构如何对设备性能发挥重要作用。
更新日期:2020-04-01
down
wechat
bug