当前位置: X-MOL 学术Comput. Phys. Commun. › 论文详情
Parallel three-dimensional simulations of quasi-static elastoplastic solids
Computer Physics Communications ( IF 3.309 ) Pub Date : 2020-03-07 , DOI: 10.1016/j.cpc.2020.107254
Nicholas M. Boffi; Chris H. Rycroft

Hypo-elastoplasticity is a flexible framework for modeling the mechanics of many hard materials under small elastic deformation and large plastic deformation. Under typical loading rates, most laboratory tests of these materials happen in the quasi-static limit, but there are few existing numerical methods tailor-made for this physical regime. In this work, we extend to three dimensions a recent projection method for simulating quasi-static hypo-elastoplastic materials. The method is based on a mathematical correspondence to the incompressible Navier–Stokes equations, where the projection method of Chorin (1968) is an established numerical technique. We develop and utilize a three-dimensional parallel geometric multigrid solver employed to solve a linear system for the quasi-static projection. Our method is tested through simulation of three-dimensional shear band nucleation and growth, a precursor to failure in many materials. As an example system, we employ a physical model of a bulk metallic glass based on the shear transformation zone theory, but the method can be applied to any elastoplasticity model. We consider several examples of three-dimensional shear banding, and examine shear band formation in physically realistic materials with heterogeneous initial conditions under both simple shear deformation and boundary conditions inspired by friction welding.
更新日期:2020-03-07

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
中洪博元
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
南开大学
朱守非
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug