当前位置: X-MOL 学术J. Comput. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Entropy–stable discontinuous Galerkin approximation with summation–by–parts property for the incompressible Navier–Stokes/Cahn–Hilliard system
Journal of Computational Physics ( IF 3.8 ) Pub Date : 2020-03-09 , DOI: 10.1016/j.jcp.2020.109363
Juan Manzanero , Gonzalo Rubio , David A. Kopriva , Esteban Ferrer , Eusebio Valero

We develop an entropy–stable two–phase incompressible Navier–Stokes/Cahn–Hilliard discontinuous Galerkin (DG) flow solver method. The model poses the Cahn–Hilliard equation as the phase field method, a skew–symmetric form of the momentum equation, and an artificial compressibility method to compute the pressure. We design the model so that it satisfies an entropy law, including free– and no–slip wall boundary conditions with non–zero wall contact angle. We then construct a high–order DG approximation of the model that satisfies the summation–by–parts simultaneous–approximation–term property. With the help of a discrete stability analysis, the scheme has two modes: an entropy–conserving approximation with central advective fluxes and the Bassi–Rebay 1 (BR1) method for diffusion, and an entropy–stable approximation with an exact Riemann solver for advection and interface stabilization added to the BR1 method. The scheme is applicable to, and the stability proofs hold for, three–dimensional unstructured meshes with curvilinear hexahedral elements. We test the convergence of the schemes on a manufactured solution, and their robustness by solving a flow initialized from random numbers. In the latter, we find that a similar scheme that does not satisfy an entropy inequality had 30 % probability to fail, while the entropy–stable scheme never does. We also solve the static and rising bubble test problems, and to challenge the solver capabilities we compute a three–dimensional pipe flow in the annular regime.



中文翻译:

不可压缩的Navier–Stokes / Cahn–Hilliard系统的熵稳定不连续Galerkin逼近和逐部分求和性质

我们开发了一种熵稳定的两相不可压缩Navier-Stokes / Cahn-Hilliard间断Galerkin(DG)流量求解器方法。该模型将Cahn–Hilliard方程作为相场方法,动量方程的斜对称形式以及计算压力的人工压缩方法。我们对模型进行设计,使其满足熵定律,包括壁面接触角为非零的自由壁面和无壁面边界条件。然后,我们构造模型的高阶DG逼近,该逼近满足逐部分同时求和的近似项的性质。借助离散稳定性分析,该方案具有两种模式:中心平流的熵守恒近似和Bassi-Rebay 1(BR1)扩散法,在BR1方法中增加了精确的Riemann解算器以实现对流和界面稳定的熵稳定近似。该方案适用于具有曲线六面体单元的三维非结构网格,并具有稳定性证明。我们通过解决从随机数初始化的流程,测试了方案在制造解决方案上的收敛性以及其鲁棒性。在后者中,我们发现不满足熵不等式的相似方案失败的概率为30%,而熵稳定方案则永远不会失败。我们还解决了静态和上升气泡测试问题,并且为了挑战求解器功能,我们计算了环形状态下的三维管道流。稳定性证明适用于带有曲线六面体单元的三维非结构网格。我们通过解决从随机数初始化的流程,测试了方案在制造解决方案上的收敛性以及其鲁棒性。在后者中,我们发现不满足熵不等式的相似方案失败的概率为30%,而熵稳定方案则永远不会失败。我们还解决了静态和上升气泡测试问题,并且为了挑战求解器功能,我们计算了环形状态下的三维管道流。稳定性证明适用于具有曲线六面体单元的三维非结构化网格。我们通过解决从随机数初始化的流程,测试了方案在制造解决方案上的收敛性以及其鲁棒性。在后者中,我们发现不满足熵不等式的相似方案失败的概率为30%,而熵稳定方案则永远不会失败。我们还解决了静态和上升气泡测试问题,并且为了挑战求解器功能,我们计算了环形状态下的三维管道流。我们发现,一个不满足熵不等式的相似方案失败的概率为30%,而熵稳定方案却从未如此。我们还解决了静态和上升气泡测试问题,并且为了挑战求解器功能,我们计算了环形状态下的三维管道流。我们发现,不满足熵不等式的类似方案失败的概率为30%,而熵稳定方案则永远不会失败。我们还解决了静态和上升气泡测试问题,并且为了挑战求解器功能,我们计算了环形状态下的三维管道流。

更新日期:2020-03-09
down
wechat
bug