当前位置: X-MOL 学术J. Comput. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
FFT-based high order central difference schemes for three-dimensional Poisson's equation with various types of boundary conditions
Journal of Computational Physics ( IF 3.8 ) Pub Date : 2020-03-07 , DOI: 10.1016/j.jcp.2020.109391
Hongsong Feng , Shan Zhao

In this paper, a unified approach is introduced to implement high order central difference schemes for solving Poisson's equation via the fast Fourier transform (FFT). Popular high order fast Poisson solvers in the literature include compact finite differences and spectral methods. However, FFT-based high order central difference schemes have never been developed for Poisson problems, because with long stencils, central differences require fictitious nodes outside the boundary, which poses a challenge to integrate boundary conditions in FFT computations. To overcome this difficulty, several layers of exterior grid lines are introduced to convert the problem to an immersed boundary problem with zero-padding solutions beyond the original cubic domain. Over the boundary of the enlarged cubic domain, the anti-symmetric property is naturally satisfied so that the FFT fast inversion is feasible, while the immersed boundary problem can be efficiently solved by the proposed augmented matched interface and boundary (AMIB) method. As the first fast Poisson solver based on high order central differences, the AMIB method can be easily implemented in any dimension, due to its tensor product nature of the discretization. As a systematical approach, the AMIB method can be made to arbitrarily high order in principle, and can handle the Dirichlet, Neumann, Robin or any combination of boundary conditions. The accuracy, efficiency, and robustness of the proposed AMIB method are numerically validated by considering various Poisson problems in two and three dimensions.



中文翻译:

具有各种边界条件的三维泊松方程的基于FFT的高阶中心差分格式

本文介绍了一种统一的方法,该方法可通过快速傅立叶变换(FFT)来实现高阶中心差分方案,以解决泊松方程。文献中流行的高阶快速Poisson求解器包括紧凑的有限差分和谱方法。但是,从未针对泊松问题开发基于FFT的高阶中心差分方案,因为对于较长的模板,中心差分需要边界外的虚拟节点,这给在FFT计算中集成边界条件带来了挑战。为了克服此困难,引入了几层外部网格线,以将问题转换为具有超出原始立方域的零填充解的浸入边界问题。在扩大的立方域的边界上,自然地满足了抗对称性,因此FFT快速反演是可行的,而所提出的增强匹配接口和边界(AMIB)方法可以有效解决沉浸边界问题。作为第一个基于高阶中心差的快速泊松求解器,AMIB方法由于其离散化的张量积性质,可以在任何维度上轻松实现。作为一种系统方法,可以将AMIB方法原则上设为任意高阶,并且可以处理Dirichlet,Neumann,Robin或边界条件的任何组合。通过考虑二维和三维中的各种泊松问题,对所提出的AMIB方法的准确性,效率和鲁棒性进行了数值验证。而沉浸式边界问题可以通过提出的增强匹配界面和边界(AMIB)方法有效解决。作为第一个基于高阶中心差的快速泊松求解器,AMIB方法由于其离散化的张量积性质,可以在任何维度上轻松实现。作为一种系统方法,可以将AMIB方法原则上设为任意高阶,并且可以处理Dirichlet,Neumann,Robin或边界条件的任何组合。通过考虑二维和三维中的各种泊松问题,对所提出的AMIB方法的准确性,效率和鲁棒性进行了数值验证。而沉浸式边界问题可以通过提出的增强匹配界面和边界(AMIB)方法有效解决。作为第一个基于高阶中心差的快速泊松求解器,AMIB方法由于其离散化的张量积性质,可以在任何维度上轻松实现。作为一种系统方法,可以将AMIB方法原则上设为任意高阶,并且可以处理Dirichlet,Neumann,Robin或边界条件的任何组合。通过考虑二维和三维中的各种泊松问题,对所提出的AMIB方法的准确性,效率和鲁棒性进行了数值验证。由于离散化的张量积性质,AMIB方法可以在任何维度上轻松实现。作为一种系统方法,可以将AMIB方法原则上设为任意高阶,并且可以处理Dirichlet,Neumann,Robin或边界条件的任何组合。通过考虑二维和三维中的各种泊松问题,对所提出的AMIB方法的准确性,效率和鲁棒性进行了数值验证。由于离散化的张量积性质,AMIB方法可以在任何维度上轻松实现。作为一种系统方法,可以将AMIB方法原则上设为任意高阶,并且可以处理Dirichlet,Neumann,Robin或边界条件的任何组合。通过考虑二维和三维中的各种泊松问题,对所提出的AMIB方法的准确性,效率和鲁棒性进行了数值验证。

更新日期:2020-03-09
down
wechat
bug