当前位置: X-MOL 学术Transp. Res. Part C Emerg. Technol. › 论文详情
Joint optimization of customer location clustering and drone-based routing for last-mile deliveries
Transportation Research Part C: Emerging Technologies ( IF 5.775 ) Pub Date : 2020-03-07 , DOI: 10.1016/j.trc.2020.01.019
Mohamed Salama; Sharan Srinivas

With growing consumer demand and expectations, companies are attempting to achieve cost-efficient and faster delivery operations. The integration of autonomous vehicles, such as drones, in the last-mile network design can curtail many operational challenges and provide a competitive advantage. This paper deals with the problem of delivering orders to a set of customer locations using multiple drones that operate in conjunction with a single truck. To take advantage of the drone fleet, the delivery tasks are parallelized by concurrently dispatching the drones from a truck parked at a focal point (ideal drone launch location) to the nearby customer locations. Hence, the key decisions to be optimized are the partitioning of delivery locations into small clusters, identifying a focal point per cluster, and routing the truck through all focal points such that the customer orders in each cluster are fulfilled either by a drone or truck. In contrast to prior studies that tackle this problem using multi-phase sequential procedures, this paper presents mathematical programming models to jointly optimize all the decisions involved. We also consider two polices for choosing a cluster focal point - (i) restricting it to one of the customer locations, and (ii) allowing it to be anywhere in the delivery area (i.e., a customer or non-customer location). Since the models considering unrestricted focal points are computationally expensive, an unsupervised machine learning-based heuristic algorithm is proposed to accelerate the solution time. Initially, we treat the problem as a single objective by independently minimizing either the total cost or delivery completion time. Subsequently, the two conflicting objectives are considered together for obtaining the set of best trade-off solutions. An extensive computational study is conducted to investigate the impacts of restricting the focal points, and the influence of adopting a joint optimization method instead of a sequential approach. Finally, several key insights are obtained to aid the logistics practitioners in decision making.
更新日期:2020-03-09

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug