当前位置: X-MOL 学术Mechatronics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Performance analysis of valveless micropump with disposable chamber actuated through Amplified Piezo Actuator (APA) for biomedical application
Mechatronics ( IF 3.1 ) Pub Date : 2020-05-01 , DOI: 10.1016/j.mechatronics.2020.102347
Mohith S , Navin Karanth P , S.M. Kulkarni

Abstract The precise manipulation of fluid through pumping systems has been the technological challenge in microfluidic applications. The biomedical applications call for precise and accurate delivery of fluid through miniaturized pumping systems. This paper presents a novel valveless micropump for biomedical applications operated by the Amplified Piezo Actuator. Integrating the disposable chamber and reusable actuator with the proposed micropump allows the actuator to be reused and eliminates the possibility of infection or contagion. The micropump was fabricated using low-cost polymeric materials like Polymethylmethacrylate (PMMA), Silicone rubber through CNC milling, Laser Cutting, conventional moulding operation. The micropump chamber, nozzle/diffusers, and a bossed diaphragm constituted disposable part and Amplified Piezo Actuator with structural support formed the reusable part of the micropump. The bossed diaphragm of the pump chamber consists of a central cylindrical protrusion to reduce the force of adhesion on the diaphragm and transmit force required for micropump actuation. A theoretical analysis was performed to assess the effect of diaphragm thickness and the bossed region on the effective stiffness of the diaphragm, which in turn influences the deflection achieved. Besides, an analytical approach has been presented to address the effect of adhesive force on the diaphragm surface due to the residual fluid and chamber depth. The experimental characterization of the micropump was carried out to determine the optimal performance parameters with water, fluids mimicking blood plasma, and whole blood. Based on the experimental results, the pumping rate and head developed by the micropump have been significantly affected by factors such as bossed ratio, diaphragm thickness, depth of the micropump chamber, and viscosity of the fluid. The optimum configuration of the micropump cosidered silicone rubber diaphragm with thickness of 0.20 mm having a bossed ratio of 0.33 and a chamber depth of 1.25 mm. With the optimal operating parameters of 150 V sinusoidal input of frequency 5 Hz, the proposed micropump was capable of delivering 7.192 ml/min, 6.108 ml/min, and 5.013 ml/min of water and blood plasma, whole blood mimicking fluid with the maximum backpressure of 294.00 Pa, 226.243 Pa, and 204.048 Pa respectively. The corresponding resolution, i.e., pumping volume/stroke of the micropump was about 23.972 µl, 20.358 µl, and 16.708 µl, respectively.

中文翻译:

通过放大压电执行器 (APA) 驱动一次性腔室的无阀微型泵用于生物医学应用的性能分析

摘要 通过泵系统精确操纵流体一直是微流体应用中的技术挑战。生物医学应用要求通过微型泵系统精确和准确地输送流体。本文介绍了一种新型无阀微型泵,用于由放大压电执行器操作的生物医学应用。将一次性腔室和可重复使用的致动器与提议的微型泵集成在一起,可以重复使用致动器并消除感染或传染的可能性。微型泵使用低成本聚合材料如聚甲基丙烯酸甲酯 (PMMA)、硅橡胶通过 CNC 铣削、激光切割和常规成型操作制造。微型泵室、喷嘴/扩散器、凸出的隔膜构成了一次性部分,带有结构支撑的放大压电执行器构成了微型泵的可重复使用部分。泵室的凸出隔膜由一个中央圆柱形突起组成,以减少隔膜上的粘附力并传递微型泵驱动所需的力。进行了理论分析以评估膜片厚度和凸起区域对膜片有效刚度的影响,这反过来又会影响实现的挠度。此外,还提出了一种分析方法来解决由于残留流体和腔室深度而对隔膜表面的粘附力的影响。对微型泵进行了实验表征,以确定用水、模拟血浆的流体、和全血。根据实验结果,微型泵开发的泵速和扬程受到凸台比、隔膜厚度、微型泵腔深度和流体粘度等因素的显着影响。微泵的最佳配置考虑了厚度为0.20 mm、凸台比为0.33、腔深为1.25 mm的硅橡胶隔膜。在频率为 5 Hz 的 150 V 正弦输入的最佳操作参数下,所提出的微型泵能够输送 7.192 ml/min、6.108 ml/min 和 5.013 ml/min 的水和血浆,全血模拟流体最大背压分别为 294.00 Pa、226.243 Pa 和 204.048 Pa。相应的分辨率,即微型泵的泵送量/冲程约为 23.972 µl、20.358 µl 和 16.708 µl,
更新日期:2020-05-01
down
wechat
bug