当前位置: X-MOL 学术Wear › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Two body abrasion wear behaviour of Cu–ZrB2 composites against SiC emery paper
Wear ( IF 5.3 ) Pub Date : 2020-06-01 , DOI: 10.1016/j.wear.2020.203260
Mahammad Ali Shaik , Brahma Raju Golla

Abstract The effect of ZrB2 (1, 3, 5, 10 wt%) reinforcement on two-body abrasion wear properties of Cu was studied using pin-on-disc wear tester. The relative density of Cu–ZrB2 composites varied in the range between 96.0 and 99.7%, and in particular, relative density of copper was lowered with the addition of ZrB2. Among all the composites, Cu–10ZrB2 showed maximum hardness (1.25 GPa) and yield strength (261 MPa). However, the improvement of mechanical properties of Cu with ZrB2 was marginal. On the other hand, the ZrB2 addition significantly affected the wear properties of Cu. The steady-state coefficient of friction (COF) of Cu was reduced from 0.56 to 0.16 with the addition of ZrB2. Pure Cu exhibited a high wear coefficient (17.33 × 10−2) due to its softness and high ductile nature. The abrasive wear resistance of Cu was considerably improved with the addition of ZrB2 (up to 3 wt%) by resisting the cutting forces of SiC abrasives (counterbody). A low wear coefficient of 2.4 × 10−2 was evident for Cu–3ZrB2 composites and the wear was reduced by 7.33 times compared to pure Cu. Further addition of ZrB2 reinforcement lowered wear resistance of Cu composites. Nevertheless, the wear resistance of Cu composites was substantially better than pure Cu. The wear mechanisms were proposed based on microstructural analysis of worn surfaces of Cu–ZrB2 composites, SiC emery paper (counterbody) and wear debris. The present study demonstrates the advantage of selecting ZrB2 as reinforcement in improving the abrasion wear resistance of Cu.

中文翻译:

Cu-ZrB2复合材料对SiC砂纸的两体磨耗行为

摘要 采用销盘式磨损试验机研究了ZrB2 (1, 3, 5, 10 wt%)增强剂对Cu双体磨损性能的影响。Cu-ZrB2 复合材料的相对密度在 96.0% 到 99.7% 之间变化,特别是铜的相对密度随着 ZrB2 的加入而降低。在所有复合材料中,Cu-10ZrB2 显示出最大的硬度(1.25 GPa)和屈服强度(261 MPa)。然而,使用 ZrB2 对 Cu 的机械性能的改善是微不足道的。另一方面,ZrB2 的添加显着影响了 Cu 的磨损性能。添加 ZrB2 后,Cu 的稳态摩擦系数 (COF) 从 0.56 降低到 0.16。纯铜由于其柔软性和高延展性而表现出高磨损系数(17.33 × 10-2)。通过抵抗 SiC 磨料(配对体)的切削力,添加 ZrB2(高达 3 wt%)显着提高了 Cu 的耐磨性。Cu-3ZrB2 复合材料的磨损系数低,为 2.4 × 10-2,与纯铜相比,磨损降低了 7.33 倍。进一步添加 ZrB2 增强材料降低了 Cu 复合材料的耐磨性。尽管如此,铜复合材料的耐磨性明显优于纯铜。磨损机制是基于对 Cu-ZrB2 复合材料、SiC 砂纸(反体)和磨屑的磨损表面的微观结构分析提出的。本研究证明了选择 ZrB2 作为增强材料在提高 Cu 的耐磨性方面的优势。Cu-3ZrB2 复合材料的磨损系数低,为 2.4 × 10-2,与纯铜相比,磨损降低了 7.33 倍。进一步添加 ZrB2 增强材料降低了 Cu 复合材料的耐磨性。尽管如此,铜复合材料的耐磨性明显优于纯铜。磨损机制是基于对 Cu-ZrB2 复合材料、SiC 砂纸(反体)和磨屑的磨损表面的微观结构分析提出的。本研究证明了选择 ZrB2 作为增强材料在提高 Cu 的耐磨性方面的优势。Cu-3ZrB2 复合材料的磨损系数低,为 2.4 × 10-2,与纯铜相比,磨损降低了 7.33 倍。进一步添加 ZrB2 增强材料降低了 Cu 复合材料的耐磨性。尽管如此,铜复合材料的耐磨性明显优于纯铜。磨损机制是基于对 Cu-ZrB2 复合材料、SiC 砂纸(反体)和磨屑的磨损表面的微观结构分析提出的。本研究证明了选择 ZrB2 作为增强材料在提高 Cu 的耐磨性方面的优势。Cu复合材料的耐磨性明显优于纯Cu。磨损机制是基于对 Cu-ZrB2 复合材料、SiC 砂纸(反体)和磨屑的磨损表面的微观结构分析提出的。本研究证明了选择 ZrB2 作为增强材料在提高 Cu 的耐磨性方面的优势。Cu复合材料的耐磨性明显优于纯Cu。磨损机制是基于对 Cu-ZrB2 复合材料、SiC 砂纸(反体)和磨屑的磨损表面的微观结构分析提出的。本研究证明了选择 ZrB2 作为增强材料在提高 Cu 的耐磨性方面的优势。
更新日期:2020-06-01
down
wechat
bug