当前位置: X-MOL 学术Fuel › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Syngas, tar and char behavior in chemical looping gasification of sawdust pellet in fluidized bed
Fuel ( IF 6.7 ) Pub Date : 2020-06-01 , DOI: 10.1016/j.fuel.2020.117464
Shen Wang , Tao Song , Shangyi Yin , Ernst-Ulrich Hartge , Timo Dymala , Laihong Shen , Stefan Heinrich , Joachim Werther

Abstract Due to the advantages of high energy density and convenient transportation, the use of pelletized biomass as fuel for power supply has gained interest over recent years. Chemical looping gasification (CLG) integrates the process of gasification and hot gas conditioning, with the objective to obtain syngas with a low tar amount. The work presents some experimental results using sawdust pellet with high-volatile and low-ash content as fuel, and a natural manganese-iron ore as oxygen carrier for CLG in a bubbling fluidized bed. Without the addition of external steam, the syngas, tar, and char collected at different temperatures (750–950 ℃) and oxygen carrier to biomass ratios (0.2–1.2) were investigated to determine the gasification performance of sawdust pellet. Three-phase product distributions during CLG process were identified under different operating parameters. The increase of reaction temperature enhances the gas production, with decreasing amount of liquid and solid. Also, it has significant influence on the main gases (CO, CO2, H2 and CH4) distributions in the syngas. Meanwhile, more Polycyclic-Aromatic Hydrocarbons (PAHs) are cracked to Mono-Aromatic Hydrocarbons (MAHs) and further decomposition into syngas, which is confirmed by further Gas Chromatography-Mass Spectrometer (GC–MS) analyses. The Mn/Fe-based oxygen carrier also exhibits a beneficial effect on catalytic cracking of PAHs into MAHs. As for the remaining char, a higher temperature is more sensitive to produce the char with more porous structure and brittle texture.

中文翻译:

流化床木屑球团化学循环气化合成气、焦油和焦炭行为

摘要 由于具有能量密度高、交通便利等优点,近年来利用颗粒状生物质作为燃料供电引起了人们的兴趣。化学循环气化 (CLG) 将气化和热气调节过程集成在一起,目的是获得低焦油量的合成气。该工作展示了一些实验结果,使用高挥发性和低灰分含量的锯末颗粒作为燃料,并在鼓泡流化床中使用天然锰铁矿石作为 CLG 的氧载体。在不添加外部蒸汽的情况下,研究了在不同温度(750-950 ℃)和氧载体与生物质比(0.2-1.2)下收集的合成气、焦油和焦炭,以确定木屑颗粒的气化性能。在不同的操作参数下,确定了 CLG 过程中的三相产品分布。随着反应温度的升高,气体产量增加,液体和固体量减少。此外,它对合成气中的主要气体(CO、CO2、H2 和 CH4)的分布有显着影响。同时,更多的多环芳烃 (PAH) 裂解为单芳烃 (MAH) 并进一步分解为合成气,进一步的气相色谱-质谱 (GC-MS) 分析证实了这一点。Mn/Fe 基氧载体对 PAHs 催化裂解为 MAHs 也表现出有益的作用。对于剩余的炭,较高的温度对产生具有更多孔结构和脆性质地的炭更敏感。随着反应温度的升高,气体产量增加,液体和固体量减少。此外,它对合成气中的主要气体(CO、CO2、H2 和 CH4)的分布有显着影响。同时,更多的多环芳烃 (PAH) 裂解为单芳烃 (MAH) 并进一步分解为合成气,进一步的气相色谱-质谱 (GC-MS) 分析证实了这一点。Mn/Fe 基氧载体对 PAHs 催化裂解为 MAHs 也表现出有益的作用。对于剩余的炭,较高的温度对产生具有更多孔结构和脆性质地的炭更敏感。随着反应温度的升高,气体产量增加,液体和固体量减少。此外,它对合成气中的主要气体(CO、CO2、H2 和 CH4)的分布有显着影响。同时,更多的多环芳烃 (PAH) 裂解为单芳烃 (MAH) 并进一步分解为合成气,进一步的气相色谱-质谱 (GC-MS) 分析证实了这一点。Mn/Fe 基氧载体对 PAHs 催化裂解为 MAHs 也表现出有益的作用。对于剩余的炭,较高的温度对产生具有更多孔结构和脆性质地的炭更敏感。同时,更多的多环芳烃 (PAH) 裂解为单芳烃 (MAH) 并进一步分解为合成气,进一步的气相色谱-质谱 (GC-MS) 分析证实了这一点。Mn/Fe 基氧载体对 PAHs 催化裂解为 MAHs 也表现出有益的作用。对于剩余的炭,较高的温度对产生具有更多孔结构和脆性质地的炭更敏感。同时,更多的多环芳烃 (PAH) 裂解为单芳烃 (MAH) 并进一步分解为合成气,进一步的气相色谱-质谱 (GC-MS) 分析证实了这一点。Mn/Fe 基氧载体对 PAHs 催化裂解为 MAHs 也表现出有益的作用。对于剩余的炭,较高的温度对产生具有更多孔结构和脆性质地的炭更敏感。
更新日期:2020-06-01
down
wechat
bug