当前位置: X-MOL 学术Biotechnol. Biofuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development and characterization of a Nannochloropsis mutant with simultaneously enhanced growth and lipid production
Biotechnology for Biofuels ( IF 6.1 ) Pub Date : 2020-03-05 , DOI: 10.1186/s13068-020-01681-4
Ae Jin Ryu 1, 2 , Nam Kyu Kang 1, 3 , Seungjib Jeon 1, 2 , Dong Hoon Hur 1 , Eun Mi Lee 4 , Do Yup Lee 4 , Byeong-Ryool Jeong 1, 5, 6 , Yong Keun Chang 1, 2 , Ki Jun Jeong 1, 7
Affiliation  

The necessity to develop high lipid-producing microalgae is emphasized for the commercialization of microalgal biomass, which is environmentally friendly and sustainable. Nannochloropsis are one of the best industrial microalgae and have been widely studied for their lipids, including high-value polyunsaturated fatty acids (PUFAs). Many reports on the genetic and biological engineering of Nannochloropsis to improve their growth and lipid contents have been published. We performed insertional mutagenesis in Nannochloropsis salina, and screened mutants with high lipid contents using fluorescence-activated cell sorting (FACS). We isolated a mutant, Mut68, which showed improved growth and a concomitant increase in lipid contents. Mut68 exhibited 53% faster growth rate and 34% higher fatty acid methyl ester (FAME) contents after incubation for 8 days, resulting in a 75% increase in FAME productivity compared to that in the wild type (WT). By sequencing the whole genome, we identified the disrupted gene in Mut68 that encoded trehalose-6-phosphate (T6P) synthase (TPS). TPS is composed of two domains: TPS domain and T6P phosphatase (TPP) domain, which catalyze the initial formation of T6P and dephosphorylation to trehalose, respectively. Mut68 was disrupted at the TPP domain in the C-terminal half, which was confirmed by metabolic analyses revealing a great reduction in the trehalose content in Mut68. Consistent with the unaffected N-terminal TPS domain, Mut68 showed moderate increase in T6P that is known for regulation of sugar metabolism, growth, and lipid biosynthesis. Interestingly, the metabolic analyses also revealed a significant increase in stress-related amino acids, including proline and glutamine, which may further contribute to the Mut68 phenotypes. We have successfully isolated an insertional mutant showing improved growth and lipid production. Moreover, we identified the disrupted gene encoding TPS. Consistent with the disrupted TPP domain, metabolic analyses revealed a moderate increase in T6P and greatly reduced trehalose. Herein, we provide an excellent proof of concept that the selection of insertional mutations via FACS can be employed for the isolation of mutants with improved growth and lipid production. In addition, trehalose and genes encoding TPS will provide novel targets for chemical and genetic engineering, in other microalgae and organisms as well as Nannochloropsis.

中文翻译:

一种同时增强生长和脂质产生的微拟球藻突变体的开发和表征

强调开发高产脂质微藻的必要性,以实现微藻生物质的商业化,这是环境友好和可持续的。微绿球藻是最好的工业微藻之一,因其脂质(包括高价值多不饱和脂肪酸(PUFA))而被广泛研究。许多关于微球藻的遗传和生物工程以改善其生长和脂质含量的报告已经发表。我们在 Nannochloropsis salina 中进行了插入诱变,并使用荧光激活细胞分选 (FACS) 筛选了具有高脂质含量的突变体。我们分离出一个突变体 Mut68,它显示出生长改善和脂质含量的伴随增加。Mut68 在孵化 8 天后表现出 53% 更快的生长速度和 34% 的高级脂肪酸甲酯 (FAME) 含量,与野生型 (WT) 相比,FAME 生产力提高了 75%。通过对整个基因组进行测序,我们确定了 Mut68 中编码海藻糖-6-磷酸 (T6P) 合酶 (TPS) 的被破坏基因。TPS 由两个结构域组成:TPS 结构域和 T6P 磷酸酶 (TPP) 结构域,它们分别催化 T6P 的初始形成和去磷酸化为海藻糖。Mut68 在 C 端半部的 TPP 结构域被破坏,代谢分析证实了这一点,表明 Mut68 中的海藻糖含量大大降低。与未受影响的 N 端 TPS 结构域一致,Mut68 显示出以调节糖代谢、生长和脂质生物合成而闻名的 T6P 适度增加。有趣的是,代谢分析还揭示了与压力相关的氨基酸显着增加,包括脯氨酸和谷氨酰胺,这可能进一步促成 Mut68 表型。我们已成功分离出一种插入突变体,该突变体显示出改善的生长和脂质生产。此外,我们确定了编码 TPS 的破坏基因。与中断的 TPP 结构域一致,代谢分析显示 T6P 适度增加,海藻糖大大减少。在这里,我们提供了一个很好的概念证明,即通过 FACS 选择插入突变可用于分离具有改善生长和脂质生产的突变体。此外,海藻糖和编码 TPS 的基因将为化学和基因工程、其他微藻和生物以及微绿球藻提供新的靶点。我们已成功分离出一种插入突变体,该突变体显示出改善的生长和脂质生产。此外,我们确定了编码 TPS 的破坏基因。与中断的 TPP 结构域一致,代谢分析显示 T6P 适度增加,海藻糖大大减少。在这里,我们提供了一个很好的概念证明,即通过 FACS 选择插入突变可用于分离具有改善生长和脂质生产的突变体。此外,海藻糖和编码 TPS 的基因将为化学和基因工程、其他微藻和生物以及微绿球藻提供新的靶点。我们已成功分离出一种插入突变体,该突变体显示出改善的生长和脂质生产。此外,我们确定了编码 TPS 的破坏基因。与中断的 TPP 结构域一致,代谢分析显示 T6P 适度增加,海藻糖大大减少。在这里,我们提供了一个很好的概念证明,即通过 FACS 选择插入突变可用于分离具有改善生长和脂质生产的突变体。此外,海藻糖和编码 TPS 的基因将为化学和基因工程、其他微藻和生物以及微绿球藻提供新的靶点。代谢分析显示 T6P 适度增加,海藻糖大大减少。在这里,我们提供了一个很好的概念证明,即通过 FACS 选择插入突变可用于分离具有改善生长和脂质生产的突变体。此外,海藻糖和编码 TPS 的基因将为化学和基因工程、其他微藻和生物以及微绿球藻提供新的靶点。代谢分析显示 T6P 适度增加,海藻糖大大减少。在这里,我们提供了一个很好的概念证明,即通过 FACS 选择插入突变可用于分离具有改善生长和脂质生产的突变体。此外,海藻糖和编码 TPS 的基因将为化学和基因工程、其他微藻和生物以及微绿球藻提供新的靶点。
更新日期:2020-04-22
down
wechat
bug