当前位置: X-MOL 学术ACS Sens. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Three-Dimensionally Printed Microelectromechanical-System Hydrogel Valve for Communicating Hydrocephalus.
ACS Sensors ( IF 8.2 ) Pub Date : 2020-03-06 , DOI: 10.1021/acssensors.0c00181
Seunghyun Lee 1 , Ruth E Bristol 2 , Mark C Preul 3 , Junseok Chae 1
Affiliation  

Hydrocephalus (HCP) is a chronic neurological brain disorder caused by a malfunction of the cerebrospinal fluid (CSF) drainage mechanism in the brain. The current standard method to treat HCP is a shunt system. Unfortunately, the shunt system suffers from complications including mechanical malfunctions, obstructions, infections, blockage, breakage, overdrainage, and/or underdrainage. Some of these complications may be attributed to the shunts' physically large and lengthy course making them susceptible to external forces, siphoning effects, and risks of infection. Additionally, intracranial catheters artificially traverse the brain and drain the ventricle rather than the subarachnoid space. We report a 3D-printed microelectromechanical system-based implantable valve to improve HCP treatment. This device provides an alternative approach targeting restoration of near-natural CSF dynamics by artificial arachnoid granulations (AGs), natural components for CSF drainage in the brain. The valve, made of hydrogel, aims to regulate the CSF flow between the subarachnoid space and the superior sagittal sinus, in essence, substituting for the obstructed arachnoid granulations. The valve, operating in a fully passive manner, utilizes the hydrogel swelling feature to create nonzero cracking pressure, PT ≈ 47.4 ± 6.8 mmH2O, as well as minimize reverse flow leakage, QO ≈ 0.7 μL/min on benchtop experiments. The additional measurements performed in realistic experimental setups using a fixed sheep brain also deliver comparable results, PT ≈ 113.0 ± 9.8 mmH2O and QO ≈ 3.7 μL/min. In automated loop functional tests, the valve maintains functionality for a maximum of 1536 cycles with the PT variance of 44.5 mmH2O < PT < 61.1 mmH2O and negligible average reverse flow leakage rates of ∼0.3 μL/min.

中文翻译:

用于脑积水沟通的三维印刷微机电系统水凝胶阀。

脑积水(HCP)是一种慢性神经性脑部疾病,由大脑中脑脊液(CSF)排泄机制的故障引起。当前治疗HCP的标准方法是分流系统。不幸的是,分流系统遭受包括机械故障,阻塞,感染,阻塞,破损,过度排水和/或排水不足的并发症。这些并发症中的一些可能归因于分流器的体大而漫长的过程,使其容易受到外力,虹吸作用和感染风险的影响。另外,颅内导管人工穿过大脑并排泄脑室,而不是蛛网膜下腔。我们报告了一种基于3D打印的微机电系统的可植入瓣膜,以改善HCP治疗。该设备提供了另一种方法,可通过人工蛛网膜颗粒(AGs)来恢复近乎自然的CSF动力学,AG是大脑中CSF引流的天然成分。该阀由水凝胶制成,旨在调节蛛网膜下腔和上矢状窦之间的脑脊液流量,实质上是替代阻塞的蛛网膜颗粒。该阀以完全被动的方式运行,利用水凝胶膨胀功能来产生非零的开裂压力PT≈47.4±6.8 mmH2O,并最大程度地减少台式实验中的逆流泄漏QO≈0.7μL/ min。使用固定的绵羊脑在实际实验设置中执行的其他测量也可提供可比较的结果,PT≈113.0±9.8 mmH2O和QO≈3.7μL/ min。在自动回路功能测试中,
更新日期:2020-03-06
down
wechat
bug