当前位置: X-MOL 学术ACS Appl. Bio Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Boron Nitride Based Nanobiocomposites: Design by 3D Printing for Bone Tissue Engineering
ACS Applied Bio Materials ( IF 4.6 ) Pub Date : 2020-03-05 , DOI: 10.1021/acsabm.9b00965
Habib Belaid 1, 2 , Sakthivel Nagarajan 1 , Carole Barou 1, 2, 3 , Vincent Huon 4 , Jonathan Bares 4 , Sébastien Balme 1 , Philippe Miele 1 , David Cornu 1 , Vincent Cavaillès 2 , Catherine Teyssier 2 , Mikhael Bechelany 1
Affiliation  

Here, we produced a synthetic polymer having adequate biocompatibility, biodegradability, and bioresorbability, as well as mechanical properties for applications in bone tissue engineering. We used the fused deposition modeling (FDM) based 3D printing approach in order to produce biomimetic biodegradable scaffolds made of polylactic acid (PLA). We strengthened these scaffolds by addition of exfoliated boron nitride (EBN) as filler. We demonstrated the presence of EBN by physicochemical analysis using Raman spectroscopy and X-ray diffraction (XRD). Using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), we found that EBN incorporation did not influence the transition temperature, but reduced the polymer crystallinity. Scanning electron microscopy for morphology evaluation showed a mean scaffold pore size of 500 μm. EBN incorporation did not affect the scaffold mechanical properties (tensile test), but modified the surface roughness. Moreover, contact angle quantification indicated that the surface of PLA/EBN scaffolds was hydrophilic and that of PLA scaffolds hydrophobic. Finally, the results of the cytotoxicity, cell attachment, and proliferation experiments using MG-63 and MC3T3 cells indicated that PLA scaffolds filled with EBN were nontoxic and compatible with osteoblastic cells and also promoted the scaffold mineralization by MG-63 cells. Altogether, our results suggest that this 3D printed nanocomposite scaffold is suitable for tissue engineering.

中文翻译:

基于氮化硼的纳米生物复合材料:用于骨组织工程的 3D 打印设计

在这里,我们生产了一种合成聚合物,该聚合物具有足够的生物相容性、生物降解性和生物再吸收性,以及用于骨组织工程应用的机械性能。我们使用基于熔融沉积建模 (FDM) 的 3D 打印方法来生产由聚乳酸 (PLA) 制成的仿生生物可降解支架。我们通过添加剥落的氮化硼 (EBN) 作为填料来加强这些支架。我们使用拉曼光谱和 X 射线衍射 (XRD) 通过物理化学分析证明了 EBN 的存在。使用差示扫描量热法 (DSC) 和热重分析 (TGA),我们发现 EBN 的掺入不会影响转变温度,但会降低聚合物的结晶度。用于形态评估的扫描电子显微镜显示平均支架孔径为 500 μm。EBN 掺入不影响支架机械性能(拉伸试验),但改变了表面粗糙度。此外,接触角量化表明PLA/EBN支架的表面是亲水的,而PLA支架的表面是疏水的。最后,使用 MG-63 和 MC3T3 细胞进行的细胞毒性、细胞附着和增殖实验的结果表明,填充 EBN 的 PLA 支架无毒且与成骨细胞相容,并且还促进了 MG-63 细胞的支架矿化。总之,我们的结果表明这种 3D 打印的纳米复合材料支架适用于组织工程。接触角定量表明PLA/EBN支架的表面是亲水的,PLA支架的表面是疏水的。最后,使用 MG-63 和 MC3T3 细胞进行的细胞毒性、细胞附着和增殖实验的结果表明,填充 EBN 的 PLA 支架无毒且与成骨细胞相容,并且还促进了 MG-63 细胞的支架矿化。总之,我们的结果表明这种 3D 打印的纳米复合材料支架适用于组织工程。接触角定量表明PLA/EBN支架的表面是亲水的,PLA支架的表面是疏水的。最后,使用 MG-63 和 MC3T3 细胞进行的细胞毒性、细胞附着和增殖实验的结果表明,填充 EBN 的 PLA 支架无毒且与成骨细胞相容,并且还促进了 MG-63 细胞的支架矿化。总之,我们的结果表明这种 3D 打印的纳米复合材料支架适用于组织工程。
更新日期:2020-04-23
down
wechat
bug