当前位置: X-MOL 学术Adv. Eng. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fiber Volume Fraction Influence on Randomly Distributed Short Fiber Tungsten Fiber Reinforced Tungsten Composites
Advanced Engineering Materials ( IF 3.4 ) Pub Date : 2020-03-29 , DOI: 10.1002/adem.201901242
Yiran Mao 1, 2 , Jan W. Coenen 1 , Johann Riesch 3 , Sree Sistla 4 , Jürgen Almanstötter 5 , Alexis Terra 1 , Chang Chen 2 , Yucheng Wu 2 , Leonard Raumann 1 , Till Höschen 3 , Hanns Gietl 3 , Rudolf Neu 3 , Christoph Broeckmann 4 , Christian Linsmeier 1
Affiliation  

For future fusion reactors, tungsten (W) is currently the main candidate for the application as plasma-facing material as it is resilient against erosion, has the highest melting point of any metal, and shows rather benign behavior under neutron irradiation. However, a major concern of W is its intrinsic brittleness under the extreme fusion environment with high transient heat loads and neutron irradiation. Cracks could be formed and lead to a component failure. To overcome this drawback, W fiberreinforced W (Wf/W) composites have been developed. Relying on an extrinsic toughening principle, even in the brittle regime, this material allows for a certain tolerance toward cracking and damage in general in comparison to conventional W. In general, similar to the ceramic fiber-reinforced composites, a relatively weak interface between the fiber and the matrix is considered to be beneficial to achieve the so-called pseudoductility. In previous studies, the Wf/Wmaterial is mainly produced by chemical vapor deposition (CVD) process. However, powder metallurgy (PM) processes are the main manufacturing routes to produce W material in industry. Compared with the CVD process, PM processes have several benefits, such as substantial experience with bulk production, higher production rate, and an easier realization of alloyed materials. In recent studies,

中文翻译:

纤维体积分数对随机分布短纤维钨纤维增强钨复合材料的影响

对于未来的聚变反应堆,钨 (W) 目前是作为面向等离子体材料应用的主要候选材料,因为它具有抗侵蚀能力,具有任何金属的最高熔点,并且在中子辐射下表现出相当温和的行为。然而,W 的一个主要问题是其在具有高瞬态热负荷和中子辐射的极端聚变环境下的固有脆性。可能会形成裂纹并导致组件故障。为了克服这个缺点,开发了 W 纤维增强 W (Wf/W) 复合材料。依靠外在增韧原理,即使在脆性状态下,与传统 W 相比,这种材料也允许对开裂和损坏有一定的耐受性。 一般来说,类似于陶瓷纤维增强复合材料,纤维和基体之间相对较弱的界面被认为有利于实现所谓的假延展性。在以往的研究中,Wf/W 材料主要采用化学气相沉积 (CVD) 工艺生产。然而,粉末冶金 (PM) 工艺是工业中生产 W 材料的主要制造途径。与 CVD 工艺相比,PM 工艺有几个好处,例如大量生产的丰富经验、更高的生产率以及更容易实现合金材料。在最近的研究中,与 CVD 工艺相比,PM 工艺有几个优点,例如大量生产的丰富经验、更高的生产率以及更容易实现合金材料。在最近的研究中,与 CVD 工艺相比,PM 工艺有几个优点,例如大量生产的丰富经验、更高的生产率以及更容易实现合金材料。在最近的研究中,
更新日期:2020-03-29
down
wechat
bug