当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Crosslinked fluoropolymers exhibiting superior high-temperature energy density and charge–discharge efficiency
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2020-03-04 , DOI: 10.1039/c9ee03603b
He Li 1, 2, 3, 4 , Matthew R. Gadinski 1, 2, 3, 4 , Yuqi Huang 1, 2, 3, 4 , Lulu Ren 1, 2, 3, 4 , Yao Zhou 1, 2, 3, 4 , Ding Ai 1, 2, 3, 4 , Zhubing Han 1, 2, 3, 4 , Bin Yao 1, 2, 3, 4 , Qing Wang 1, 2, 3, 4
Affiliation  

The electrification of transport requires dielectric materials capable of operating efficiently at high temperatures to meet the increasing demand of electrical energy storage at extreme conditions. Current high-temperature dielectric polymers rely on the incorporation of wide bandgap inorganic fillers to restrain electrical conduction and achieve high efficiencies at elevated temperatures. Here, we report a new class of all-polymer based high-temperature dielectric materials prepared from crosslinking of melt-processable fluoropolymers. The crosslinked polymers exhibit larger discharged energy densities and greater charge–discharge efficiencies along with excellent breakdown strength and cyclic stability at elevated temperatures when compared to the current dielectric polymers. The origins of the marked improvement in the high-temperature capacitive performance are traced to efficient charge-trapping by a range of the molecular trapping centers resulting from the crosslinked structures. In addition, the implementation of melt-extrudable polymers would enable scalable processing that is compatible with the current fabrication techniques used for polymer dielectrics, which is in sharp contrast to the dielectric polymer composites with inorganic fillers.

中文翻译:

交联的含氟聚合物具有优异的高温能量密度和充放电效率

运输的电气化需要能够在高温下有效运行的介电材料,以满足在极端条件下不断增长的电能存储需求。当前的高温介电聚合物依赖于宽带隙无机填料的结合来抑制导电并在高温下实现高效率。在这里,我们报告了一种由可熔融加工的含氟聚合物交联制备的新型的全聚合物基高温介电材料。与目前的介电聚合物相比,交联聚合物表现出更大的放电能量密度和更高的充放电效率,以及在高温下的出色击穿强度和循环稳定性。高温电容性能显着改善的起因可追溯到由交联结构产生的一系列分子俘获中心引起的有效电荷俘获。另外,可熔融挤出的聚合物的实施将使得可扩展的处理与用于聚合物电介质的当前制造技术兼容,这与具有无机填料的电介质聚合物复合材料形成鲜明对比。
更新日期:2020-04-24
down
wechat
bug