当前位置: X-MOL 学术Transp. Res. Part C Emerg. Technol. › 论文详情
Collaborative optimization of last-train timetables with accessibility: A space-time network design based approach
Transportation Research Part C: Emerging Technologies ( IF 5.775 ) Pub Date : 2020-03-04 , DOI: 10.1016/j.trc.2020.02.022
Lixing Yang; Zhen Di; Maged M. Dessouky; Ziyou Gao; Jungang Shi

To improve the accessibility of the metro network during night operations, this study aims to investigate a collaborative optimization for the last train timetable in an urban rail transit network. By using a space-time network framework, all the involved transportation activities are well characterized in an extended space-time network, in which the train space-time travel arcs, passenger travel arcs, transfer arcs, etc., are all taken into account. Two performance measures are proposed to evaluate the network-based timetable of the last trains. Through considering the route choice behaviors, the problem of interest is formulated as 0–1 linear programming models from the perspective of a space-time network design. To effectively solve the proposed models, we dualize the hard constraints into the objective function to produce the relaxed models by introducing a set of Lagrangian multipliers. Then, the sub-gradient algorithm is proposed to iteratively minimize the gap of the lower and upper bounds of the primal models. Finally, two sets of numerical experiments are implemented in an illustrative network and the Beijing metro network, respectively, and experimental results demonstrate the efficiency and performance of the proposed methods.
更新日期:2020-03-05

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug