当前位置: X-MOL 学术J. Energy Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Boosting the electrochemical performance and reliability of conducting polymer microelectrode via intermediate graphene for on-chip asymmetric micro-supercapacitor
Journal of Energy Chemistry ( IF 14.0 ) Pub Date : 2020-03-04 , DOI: 10.1016/j.jechem.2020.02.036
Muhammad Tahir , Liang He , Wei Yang , Xufeng Hong , Waqas Ali Haider , Hui Tang , Zhe Zhu , Kwadwo Asare Owusu , Liqiang Mai

High-performance anode is hurdle for on-chip planar microsupercapacitor (MSC). Polypyrrole (PPy) is a highly attractive pseudocapacitive material, but its low cycling stability, and low adhesion with current collector hinder its practicability. Herein we propose one-prong generic strategy to boost the cycling stability of PPy. For our strategy, the electrochemical deposition of multilayered reduced graphene oxide (rGO) on micropatterned Au is utilized, and the resultant rGO@Au pattern is then used for growing highly porous PPy nanostructures by facile electrochemical polymerization. The fabricated PPy anode on rGO@Au has quasi rectangular cyclic voltammetry curves up to -0.7 V and exceptional cycling stability, retaining 82% of capacitance after 10,000 charge/discharge cycles in 2 M KCl electrolyte. The outstanding reliability of PPy on rGO@Au is due to the flexibility of rGO, accommodating structural pulverization and providing a promising background for the nucleation of highly porous nanostructure. Further, an all-polymer based asymmetric aqueous MSC (AMSC) is constructed with PPy anode and PEDOT cathode, which exhibited excellent electrochemical performance compared with conventional symmetric MSCs based on conducting polymers. The constructed AMSC delivered a maximum areal capacitance of 15.9 mF cm−2 (99.3 F cm−3), high specific energy and power densities of 4.3 µWh cm−2 (27.03 mWh cm−3) and 0.36 W cm−2 (0.68 W cm−3) at 1.4 V, respectively. The enhanced electrochemical performances can be illustrated by nucleation mechanism, in which surface topology of rGO generates a promising background for nucleation and electrochemical growth of nanoporous pseudocapacitive conducting polymers with superior interfacial contact and improved surface area.



中文翻译:

通过中间石墨烯提高片上不对称微超级电容器的导电聚合物微电极的电化学性能和可靠性

高性能阳极是片上平面微型超级电容器(MSC)的障碍。聚吡咯(PPy)是一种极具吸引力的拟电容材料,但其低循环稳定性和与集电器的低粘附性阻碍了其实用性。在这里,我们提出了一种单向通用策略来提高PPy的循环稳定性。对于我们的策略,利用在微图案化的Au上的多层还原氧化石墨烯(rGO)的电化学沉积,然后将所得的rGO @ Au图案用于通过容易的电化学聚合生长高度多孔的PPy纳米结构。在rGO @ Au上制造的PPy阳极具有高达-0.7 V的准矩形循环伏安曲线,并具有出色的循环稳定性,在2 M KCl电解质中进行10,000次充电/放电循环后,保留了82%的电容。PPy在rGO @ Au上的出色可靠性是由于rGO的灵活性,适应结构粉碎并为高度多孔纳米结构的成核提供了有希望的背景。此外,使用PPy阳极和PEDOT阴极构建了基于全聚合物的不对称水性MSC(AMSC),与基于导电聚合物的常规对称MSC相比,它们具有出色的电化学性能。构造的AMSC的最大面电容为15.9 mF cm 与常规的基于导电聚合物的对称MSC相比,它具有优异的电化学性能。构造的AMSC的最大面电容为15.9 mF cm 与常规的基于导电聚合物的对称MSC相比,它具有优异的电化学性能。构造的AMSC的最大面电容为15.9 mF cm-2(99.3 F cm -3),高比能量和功率密度在1.4 V时分别为4.3 µWh cm -2(27.03 mWh cm -3)和0.36 W cm -2(0.68 W cm -3)。增强的电化学性能可以通过成核机理来说明,其中rGO的表面拓扑为具有优异的界面接触和改善的表面积的纳米多孔假电容导电聚合物的成核和电化学生长提供了有希望的背景。

更新日期:2020-03-04
down
wechat
bug