当前位置: X-MOL 学术Laser Part. Beams › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Influence of cavity and magnetic confinements on the signal enhancement and plasma parameters of laser-induced Mg and Ti plasmas
Laser and Particle Beams ( IF 1.1 ) Pub Date : 2020-02-10 , DOI: 10.1017/s0263034620000014
Emmanuel Asamoah , Ye Xia , Yao Hongbing , Pengyu Wei , Cong Jiawei , Zhu Weihua , Zhang Lin , James Kwasi Quaisie

In this study, we have spectroscopically investigated the plasma generated by a Q-switched Nd:YAG laser operating at its fundamental wavelength of 1064 nm focused on magnesium (Mg) and titanium (Ti) target samples in the air under atmospheric pressure. We employed circular cavities of radii (2.5, 3.0, and 3.5 mm) and a square cavity to investigate the cavity confinement effect on the spectral emission intensities of the plasmas. We observed that the circular cavity of radius 2.5 mm had the maximum signal enhancement, and this can be attributed to the compression of the plasma and reheating by the reflected shock waves. The maximum enhancement factor of the Mg I-518.4 nm line was reached at approximately 3.8, 3.4, and 2.8 with a circular cavity of radius 2.5, 3.0, and 3.5 mm, respectively, at a delay time of 350 ns and a laser energy of 350 mJ. By applying varying external magnetic fields (0.47, 0.62, 0.91, and 1.23 T) across the generated plasma, the plasma parameters such as electron temperature and number density have been investigated. From our results, we observed that the radius of the cavity had a tremendous effect on the enhancement of the emission signal intensities. We also found that the increase in the electron temperature and the number density can be attributed to the increase in the applied magnetic field and the laser energy. From our calculations, the value of β, which was less than 1 for all the cases, confirms that there was a plasma confinement at the presence of the magnetic field.

中文翻译:

腔和磁约束对激光诱导镁和钛等离子体信号增强和等离子体参数的影响

在这项研究中,我们对大气压下空气中镁 (Mg) 和钛 (Ti) 目标样品的 Q 开关 Nd:YAG 激光器在其基本波长 1064 nm 下工作所产生的等离子体进行了光谱研究。我们采用半径(2.5、3.0 和 3.5 毫米)的圆形腔和方形腔来研究腔限制对等离子体光谱发射强度的影响。我们观察到半径为 2.5 mm 的圆形腔具有最大的信号增强,这可以归因于等离子体的压缩和反射冲击波的重新加热。Mg I-518.4 nm 线的最大增强因子达到约 3.8、3.4 和 2.8,圆腔半径分别为 2.5、3.0 和 3.5 mm,延迟时间为 350 ns,激光能量为350 兆焦耳。通过在产生的等离子体上施加不同的外部磁场(0.47、0.62、0.91 和 1.23 T),研究了等离子体参数,例如电子温度和数密度。从我们的结果中,我们观察到腔的半径对发射信号强度的增强有巨大的影响。我们还发现电子温度和数密度的增加可归因于外加磁场和激光能量的增加。根据我们的计算,所有情况下的 β 值都小于 1,这证实在存在磁场时存在等离子体限制。已经研究了等离子体参数,例如电子温度和数密度。从我们的结果中,我们观察到腔的半径对发射信号强度的增强有巨大的影响。我们还发现电子温度和数密度的增加可归因于外加磁场和激光能量的增加。根据我们的计算,所有情况下的 β 值都小于 1,这证实在存在磁场时存在等离子体限制。已经研究了等离子体参数,例如电子温度和数密度。从我们的结果中,我们观察到腔的半径对发射信号强度的增强有巨大的影响。我们还发现电子温度和数密度的增加可归因于外加磁场和激光能量的增加。根据我们的计算,所有情况下的 β 值都小于 1,这证实在存在磁场时存在等离子体限制。我们还发现电子温度和数密度的增加可归因于外加磁场和激光能量的增加。根据我们的计算,所有情况下的 β 值都小于 1,这证实在存在磁场时存在等离子体限制。我们还发现电子温度和数密度的增加可归因于外加磁场和激光能量的增加。根据我们的计算,所有情况下的 β 值都小于 1,这证实在存在磁场时存在等离子体限制。
更新日期:2020-02-10
down
wechat
bug