当前位置: X-MOL 学术J. Comput. Neurosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A computational model for grid maps in neural populations.
Journal of Computational Neuroscience ( IF 1.2 ) Pub Date : 2020-03-03 , DOI: 10.1007/s10827-020-00742-9
Fabio Anselmi 1, 2, 3 , Micah M Murray 4, 5, 6, 7 , Benedetta Franceschiello 4, 5
Affiliation  

Grid cells in the entorhinal cortex, together with head direction, place, speed and border cells, are major contributors to the organization of spatial representations in the brain. In this work we introduce a novel theoretical and algorithmic framework able to explain the optimality of hexagonal grid-like response patterns. We show that this pattern is a result of minimal variance encoding of neurons together with maximal robustness to neurons’ noise and minimal number of encoding neurons. The novelty lies in the formulation of the encoding problem considering neurons as an overcomplete basis (a frame) where the position information is encoded. Through the modern Frame Theory language, specifically that of tight and equiangular frames, we provide new insights about the optimality of hexagonal grid receptive fields. The proposed model is based on the well-accepted and tested hypothesis of Hebbian learning, providing a simplified cortical-based framework that does not require the presence of velocity-driven oscillations (oscillatory model) or translational symmetries in the synaptic connections (attractor model). We moreover demonstrate that the proposed encoding mechanism naturally explains axis alignment of neighbor grid cells and maps shifts, rotations and scaling of the stimuli onto the shape of grid cells’ receptive fields, giving a straightforward explanation of the experimental evidence of grid cells remapping under transformations of environmental cues.

中文翻译:

神经种群中网格图的计算模型。

内嗅皮层中的网格细胞,以及头部方向,位置,速度和边界细胞,是大脑中空间表示组织的主要贡献者。在这项工作中,我们介绍了一种新颖的理论和算法框架,该框架能够解释六角形网格状响应模式的最优性。我们表明,这种模式是对神经元的最小方差编码以及对神经元的噪声的最大鲁棒性和最小数量的编码神经元的结果。新颖之处在于将神经元作为位置信息被编码的不完整基础(帧)的编码问题的表述。通过现代框架理论语言,尤其是紧密和等角框架的语言,我们提供了有关六角形网格接收场的最优性的新见解。所提出的模型基于公认的经过验证的Hebbian学习假设,提供了一个简化的基于皮质的框架,该框架不需要在突触连接中存在速度驱动的振荡(振荡模型)或平移对称性(吸引子模型) 。此外,我们证明了所提出的编码机制自然地解释了相邻网格单元的轴对齐,并将刺激的移位,旋转和缩放映射到网格单元的接收场形状上,从而给出了网格单元在变换下重新映射的实验证据的直接解释。环境提示。提供简化的基于皮质的框架,不需要在突触连接中存在速度驱动的振荡(振荡模型)或平移对称性(吸引子模型)。此外,我们证明了所提出的编码机制自然地解释了相邻网格单元的轴对齐,并将刺激的移位,旋转和缩放映射到网格单元的接收场形状上,从而给出了网格单元在变换下重新映射的实验证据的直接解释。环境提示。提供简化的基于皮质的框架,不需要在突触连接中存在速度驱动的振荡(振荡模型)或平移对称性(吸引子模型)。此外,我们证明了所提出的编码机制自然地解释了相邻网格单元的轴对齐,并将刺激的移位,旋转和缩放映射到网格单元的接收场形状上,从而给出了网格单元在变换下重新映射的实验证据的直接解释。环境提示。
更新日期:2020-03-03
down
wechat
bug