当前位置: X-MOL 学术Front. Neurorobotics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An Intuitive End-to-End Human-UAV Interaction System for Field Exploration.
Frontiers in Neurorobotics ( IF 2.6 ) Pub Date : 2020-02-14 , DOI: 10.3389/fnbot.2019.00117
Ran Jiao 1 , Zhaowei Wang 1 , Ruihang Chu 1 , Mingjie Dong 2 , Yongfeng Rong 1 , Wusheng Chou 1, 3
Affiliation  

This paper presents an intuitive end-to-end interaction system between a human and a hexacopter Unmanned Aerial Vehicle (UAV) for field exploration in which the UAV can be commanded by natural human poses. Moreover, LEDs installed on the UAV are used to communicate the state and intents of the UAV to the human as feedback throughout the interaction. A real time multi-human pose estimation system is built that can perform with low latency while maintaining competitive performance. The UAV is equipped with a robotic arm, kinematic and dynamic attitude models for which are provided by introducing the center of gravity (COG) of the vehicle. In addition, a super-twisting extended state observer (STESO)-based back-stepping controller (BSC) is constructed to estimate and attenuate complex disturbances in the attitude control system of the UAV, such as wind gusts, model uncertainties, etc. A stability analysis for the entire control system is also presented based on the Lyapunov stability theory. The pose estimation system is integrated with the proposed intelligent control architecture to command the UAV to execute an exploration task stably. Additionally, all the components of this interaction system are described. Several simulations and experiments have been conducted to demonstrate the effectiveness of the whole system and its individual components.

中文翻译:

直观的端到端人与无人机互动系统,用于野外勘探。

本文提出了一种人类和六直升机无人飞行器(UAV)之间的直观端到端交互系统,用于野外探索,在这种系统中,UAV可以由自然人的姿势来指挥。此外,安装在无人机上的LED用于在整个交互过程中将无人机的状态和意图传达给人类,作为反馈。建立了一个实时多人姿势估计系统,该系统可以在保持竞争性能的同时以低延迟执行。无人机配备有机械臂,运动学和动态姿态模型,可通过引入车辆的重心(COG)来提供。此外,构建了基于超扭曲扩展状态观察器(STESO)的后退控制器(BSC),以估计和减弱无人机姿态控制系统中的复杂干扰,例如阵风,模型不确定性等。还基于Lyapunov稳定性理论对整个控制系统进行了稳定性分析。姿态估计系统与所提出的智能控制体系结构集成在一起,以命令无人机稳定地执行探索任务。此外,还将描述此交互系统的所有组件。已经进行了一些模拟和实验,以证明整个系统及其各个组件的有效性。描述了此交互系统的所有组件。已经进行了一些模拟和实验,以证明整个系统及其各个组件的有效性。描述了此交互系统的所有组件。已经进行了一些模拟和实验,以证明整个系统及其各个组件的有效性。
更新日期:2020-02-14
down
wechat
bug