当前位置: X-MOL 学术Biotechnol. Prog. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Emulsion-based encapsulation of pluripotent stem cells in hydrogel microspheres for cardiac differentiation.
Biotechnology Progress ( IF 2.5 ) Pub Date : 2020-03-22 , DOI: 10.1002/btpr.2986
Samuel Chang 1 , Ferdous Finklea 1 , Bianca Williams 1 , Hanna Hammons 1 , Alexander Hodge 1 , Samantha Scott 1 , Elizabeth Lipke 1
Affiliation  

Cardiovascular disease is the leading cause of death worldwide, and current treatments are ineffective or unavailable to majority of patients. Engineered cardiac tissue (ECT) is a promising treatment to restore function to the damaged myocardium; however, for these treatments to become a reality, tissue fabrication must be amenable to scalable production and be used in suspension culture. Here, we have developed a low‐cost and scalable emulsion‐based method for producing ECT microspheres from poly(ethylene glycol) (PEG)–fibrinogen encapsulated mouse embryonic stem cells (mESCs). Cell‐laden microspheres were formed via water‐in‐oil emulsification; encapsulation occurred by suspending the cells in hydrogel precursor solution at cell densities from 5 to 60 million cells/ml, adding to mineral oil and vortexing. Microsphere diameters ranged from 30 to 570 μm; size variability was decreased by the addition of 2% poly(ethylene glycol) diacrylate. Initial cell encapsulation density impacted the ability for mESCs to grow and differentiate, with the greatest success occurring at higher cell densities. Microspheres differentiated into dense spheroidal ECTs with spontaneous contractions occurring as early as Day 10 of cardiac differentiation; furthermore, these ECT microspheres exhibited appropriate temporal changes in gene expression and response to pharmacological stimuli. These results demonstrate the ability to use an emulsion approach to encapsulate pluripotent stem cells for use in microsphere‐based cardiac differentiation.

中文翻译:

基于乳液的多能干细胞封装在水凝胶微球中用于心脏分化。

心血管疾病是世界范围内的主要死亡原因,目前的治疗对大多数患者无效或无法获得。工程心脏组织 (ECT) 是一种很有前景的治疗方法,可以恢复受损心肌的功能。然而,要使这些治疗成为现实,组织制造必须适合规模化生产并用于悬浮培养。在这里,我们开发了一种低成本且可扩展的基于乳液的方法,用于从聚(乙二醇)(PEG)-纤维蛋白原封装的小鼠胚胎干细胞(mESCs)生产 ECT 微球。通过油包水乳化形成负载细胞的微球;通过将细胞以 5 到 6000 万个细胞/ml 的细胞密度悬浮在水凝胶前体溶液中,加入矿物油并涡旋来实现封装。微球直径范围为 30 至 570 μm;通过添加 2% 的聚(乙二醇)二丙烯酸酯降低了尺寸变异性。初始细胞封装密度影响 mESCs 生长和分化的能力,最大的成功发生在更高的细胞密度。微球分化为致密的球状 ECT,早在心脏分化的第 10 天就发生自发收缩;此外,这些 ECT 微球在基因表达和对药理刺激的反应方面表现出适当的时间变化。这些结果证明了使用乳液方法封装多能干细胞以用于基于微球的心脏分化的能力。初始细胞封装密度影响 mESCs 生长和分化的能力,最大的成功发生在更高的细胞密度。微球分化为致密的球状 ECT,早在心脏分化的第 10 天就发生自发收缩;此外,这些 ECT 微球在基因表达和对药理刺激的反应方面表现出适当的时间变化。这些结果证明了使用乳液方法封装多能干细胞以用于基于微球的心脏分化的能力。初始细胞封装密度影响 mESCs 生长和分化的能力,最大的成功发生在更高的细胞密度。微球分化为致密的球状 ECT,早在心脏分化的第 10 天就发生自发收缩;此外,这些 ECT 微球在基因表达和对药理刺激的反应方面表现出适当的时间变化。这些结果证明了使用乳液方法封装多能干细胞以用于基于微球的心脏分化的能力。这些 ECT 微球在基因表达和对药理刺激的反应方面表现出适当的时间变化。这些结果证明了使用乳液方法封装多能干细胞以用于基于微球的心脏分化的能力。这些 ECT 微球在基因表达和对药理刺激的反应方面表现出适当的时间变化。这些结果证明了使用乳液方法封装多能干细胞以用于基于微球的心脏分化的能力。
更新日期:2020-03-22
down
wechat
bug