当前位置: X-MOL 学术Front. Energy Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Evolutionary Relationships Between Low Potential Ferredoxin and Flavodoxin Electron Carriers.
Frontiers in Energy Research ( IF 2.6 ) Pub Date : 2019-08-23 , DOI: 10.3389/fenrg.2019.00079
Ian J Campbell 1 , George N Bennett 2, 3 , Jonathan J Silberg 2, 3, 4
Affiliation  

Proteins from the ferredoxin (Fd) and flavodoxin (Fld) families function as low potential electrical transfer hubs in cells, at times mediating electron transfer between overlapping sets of oxidoreductases. To better understand protein electron carrier (PEC) use across the domains of life, we evaluated the distribution of genes encoding [4Fe-4S] Fd, [2Fe-2S] Fd, and Fld electron carriers in over 7,000 organisms. Our analysis targeted genes encoding small PEC genes encoding proteins having ≤200 residues. We find that the average number of small PEC genes per Archaea (~13), Bacteria (~8), and Eukarya (~3) genome varies, with some organisms containing as many as 54 total PEC genes. Organisms fall into three groups, including those lacking genes encoding low potential PECs (3%), specialists with a single PEC gene type (20%), and generalists that utilize multiple PEC types (77%). Mapping PEC gene usage onto an evolutionary tree highlights the prevalence of [4Fe-4S] Fds in ancient organisms that are deeply rooted, the expansion of [2Fe-2S] Fds with the advent of photosynthesis and a concomitant decrease in [4Fe-4S] Fds, and the expansion of Flds in organisms that inhabit low-iron host environments. Surprisingly, [4Fe-4S] Fds present a similar abundance in aerobes as [2Fe-2S] Fds. This bioinformatic study highlights understudied PECs whose structure, stability, and partner specificity should be further characterized.

中文翻译:

低电位铁氧还蛋白与黄酮毒素电子载体之间的进化关系。

来自铁氧还蛋白(Fd)和黄素氧还蛋白(Fld)家族的蛋白质在细胞中充当低电位电转移枢纽,有时介导重叠的氧化还原酶之间的电子转移。为了更好地理解蛋白质电子载体(PEC)在整个生命领域中的使用,我们评估了在7,000多种生物中编码[4Fe-4S] Fd,[2Fe-2S] Fd和Fld电子载体的基因的分布。我们的分析针对的基因编码的小PEC基因编码的蛋白质具有≤200个残基。我们发现每个古细菌(〜13),细菌(〜8)和Eukarya(〜3)基因组的小PEC基因的平均数目各不相同,有些生物包含多达54个总PEC基因。有机体分为三类,包括缺乏编码低潜在PECs基因的生物(3%),具有单一PEC基因类型的专家(20%),和使用多种PEC类型的通才(77%)。将PEC基因的使用定位到进化树上突出显示了[4Fe-4S] Fds在深深扎根的古代生物中的流行,[2Fe-2S] Fds的扩展以及光合作用的出现以及[4Fe-4S]的随之减少。 Fds,以及居住在低铁宿主环境中的生物中Flds的扩展。令人惊讶的是,[4Fe-4S] Fds在需氧菌中的丰度与[2Fe-2S] Fds相似。这项生物信息学研究强调了尚未充分研究的PEC,其结构,稳定性和伴侣特异性应进一步表征。随着光合作用的到来,[2Fe-2S] Fds的扩增以及[4Fe-4S] Fds的减少,以及低铁宿主环境中生物的Flds的扩增。令人惊讶的是,[4Fe-4S] Fds在需氧菌中的丰度与[2Fe-2S] Fds相似。这项生物信息学研究强调了尚未充分研究的PEC,其结构,稳定性和伴侣特异性应进一步表征。随着光合作用的到来,[2Fe-2S] Fds的扩增以及[4Fe-4S] Fds的减少,以及低铁宿主环境中生物的Flds的扩增。令人惊讶的是,[4Fe-4S] Fds在需氧菌中的丰度与[2Fe-2S] Fds相似。这项生物信息学研究强调了尚未充分研究的PEC,其结构,稳定性和伴侣特异性应进一步表征。
更新日期:2019-08-23
down
wechat
bug