当前位置: X-MOL 学术J. Virol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Establishment of a Reverse Genetics System for Influenza D Virus.
Journal of Virology ( IF 4.0 ) Pub Date : 2020-05-04 , DOI: 10.1128/jvi.01767-19
Hiroho Ishida 1 , Shin Murakami 2 , Haruhiko Kamiki 1 , Hiromichi Matsugo 1 , Akiko Takenaka-Uema 1 , Taisuke Horimoto 2
Affiliation  

Influenza D virus (IDV) was initially isolated in the United States in 2011. IDV is distributed worldwide and is one of the causative agents of the bovine respiratory disease complex (BRDC), which causes high morbidity and mortality in feedlot cattle. The molecular mechanisms of IDV pathogenicity are still unknown. Reverse genetics systems are vital tools not only for studying the biology of viruses, but also for use in applications such as recombinant vaccine viruses. Here, we report the establishment of a plasmid-based reverse genetics system for IDV. We first verified that the 3'-terminal nucleotide of each 7-segmented genomic RNA contained uracil (U), contrary to previous reports, and we were then able to successfully generate recombinant IDV by cotransfecting 7 plasmids containing these genomic RNAs along with 4 plasmids expressing polymerase proteins and nucleoprotein into human rectal tumor 18G (HRT-18G) cells. The recombinant virus had a growth deficit compared to the wild-type virus, and we determined the reason for this growth difference by examining the genomic RNA content of the viral particles. We found that the recombinant virus incorporated an unbalanced ratio of viral RNA segments into particles compared to that of the wild-type virus, and thus we adjusted the amount of each plasmid used in transfection to obtain a recombinant virus with the same replicative capacity as the wild-type virus. Our work here in establishing a reverse genetics system for IDV will have a broad range of applications, including uses in studies focused on better understanding IDV replication and pathogenicity, as well as in those contributing to the development of BRDC countermeasures.IMPORTANCE The bovine respiratory disease complex (BRDC) causes high mortality and morbidity in cattle, causing economic losses worldwide. Influenza D virus (IDV) is considered to be a causative agent of the BRDC. Here, we developed a reverse genetics system that allows for the generation of IDV from cloned cDNAs and the introduction of mutations into the IDV genome. This reverse genetics system will become a powerful tool for use in studies related to understanding the molecular mechanisms of viral replication and pathogenicity and will also lead to the development of new countermeasures against the BRDC.

中文翻译:

建立D型流感病毒反向遗传学系统。

D型流感病毒(IDV)最初于2011年在美国分离。IDV分布于世界各地,是牛呼吸道疾病综合症(BRDC)的病原体之一,该病导致饲养场牛的高发病率和高死亡率。IDV致病性的分子机制仍然未知。逆向遗传学系统不仅是研究病毒生物学的重要工具,而且还用于重组疫苗病毒等应用。在这里,我们报告为IDV建立基于质粒的反向遗传系统。我们首先验证了每个7段基因组RNA的3'末端核苷酸都含有尿嘧啶(U),这与以前的报道相反,然后我们通过将包含这些基因组RNA的7个质粒与表达聚合酶蛋白和核蛋白的4个质粒共转染到人直肠肿瘤18G(HRT-18G)细胞中,成功地产生了重组IDV。与野生型病毒相比,重组病毒具有生长缺陷,我们通过检查病毒颗粒的基因组RNA含量确定了这种生长差异的原因。我们发现,与野生型病毒相比,重组病毒将不平衡比例的病毒RNA片段掺入颗粒中,因此我们调整了用于转染的每种质粒的量,以获得具有与原核表达相同能力的重组病毒。野生型病毒。我们在为IDV建立反向遗传学系统方面的工作将有广泛的应用,包括用于更好地了解IDV复制和致病性的研究中的用途,以及有助于发展BRDC对策的研究中的用途。重要信息牛呼吸系统疾病(BRDC)导致牛的高死亡率和发病率,在世界范围内造成经济损失。D型流感病毒(IDV)被认为是BRDC的病原体。在这里,我们开发了一种反向遗传学系统,该系统允许从克隆的cDNA生成IDV,并将突变引入IDV基因组。这种反向遗传学系统将成为用于了解病毒复制和致病性分子机制的研究的有力工具,并且还将导致针对BRDC的新对策的发展。重要信息牛呼吸系统疾病综合症(BRDC)导致牛的高死亡率和发病率,在世界范围内造成经济损失。D型流感病毒(IDV)被认为是BRDC的病原体。在这里,我们开发了一种反向遗传学系统,该系统允许从克隆的cDNA生成IDV,并将突变引入IDV基因组。这种反向遗传学系统将成为与了解病毒复制和致病性分子机制有关的研究的有力工具,并且还将导致针对BRDC的新对策的发展。重要信息牛呼吸系统疾病综合症(BRDC)导致牛的高死亡率和发病率,在全世界范围内造成经济损失。D型流感病毒(IDV)被认为是BRDC的病原体。在这里,我们开发了一种反向遗传学系统,该系统允许从克隆的cDNA生成IDV,并将突变引入IDV基因组。这种反向遗传学系统将成为用于了解病毒复制和致病性分子机制的研究的有力工具,并且还将导致针对BRDC的新对策的发展。重要信息牛呼吸系统疾病综合症(BRDC)导致牛的高死亡率和高发病率,在全世界范围内造成经济损失。D型流感病毒(IDV)被认为是BRDC的病原体。在这里,我们开发了一种反向遗传学系统,该系统允许从克隆的cDNA生成IDV,并将突变引入IDV基因组。这种反向遗传学系统将成为用于了解病毒复制和致病性分子机制的研究的有力工具,并且还将导致针对BRDC的新对策的发展。重要信息牛呼吸系统疾病综合症(BRDC)会导致牛的高死亡率和高发病率,在全世界范围内造成经济损失。D型流感病毒(IDV)被认为是BRDC的病原体。在这里,我们开发了一种反向遗传学系统,该系统允许从克隆的cDNA生成IDV,并将突变引入IDV基因组。这种反向遗传学系统将成为与了解病毒复制和致病性分子机制有关的研究的有力工具,并且还将导致针对BRDC的新对策的发展。我们开发了一种反向遗传学系统,该系统可以从克隆的cDNA生成IDV,并将突变引入IDV基因组。这种反向遗传学系统将成为用于了解病毒复制和致病性分子机制的研究的有力工具,并且还将导致针对BRDC的新对策的发展。我们开发了一种反向遗传学系统,该系统可以从克隆的cDNA生成IDV,并将突变引入IDV基因组。这种反向遗传学系统将成为用于了解病毒复制和致病性分子机制的研究的有力工具,并且还将导致针对BRDC的新对策的发展。
更新日期:2020-05-04
down
wechat
bug