当前位置: X-MOL 学术Phys. Med. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Estimation of glandular dose in mammography based on artificial neural networks.
Physics in Medicine & Biology ( IF 3.3 ) Pub Date : 2020-05-11 , DOI: 10.1088/1361-6560/ab7a6d
Rodrigo Trevisan Massera 1 , Alessandra Tomal
Affiliation  

This work proposes using artificial neural networks (ANNs) for the regression of the dosimetric quantities employed in mammography. The data were generated by Monte Carlo (MC) simulations using a modified and validated version of the PENELOPE (v. 2014) + penEasy (v. 2015) code. A breast model of a homogeneous mixture of adipose and glandular tissue was adopted. The ANNs were constructed using the Keras and scikit-learn libraries for mean glandular dose (MGD) and air kerma (Kair ) regressions, respectively. In total, seven parameters were considered, including the incident photon energies (from 8.25 to 48.75 keV), breast geometry, breast glandularity and Kair acquisition geometry. Two ensembles of five ANNs each were formed to calculate MGD and Kair . The normalized glandular dose coefficients (DgN) were calculated using the ratio of the ensemble outputs for MGD and Kair . Polyenergetic DgN values were calculated by weighting monoenergetic values by the spectrum bin probabilities. The results indicate a very good ANN prediction performance when compared to the validation data, with median errors on the order of the average simulation uncertainties (≈ 0.2%). Moreover, the predicted DgN values are in good agreement compared with previously published works, with mean (maximum) differences up to 2.2% (9.4%). Therefore, it is shown that ANNs could be a complementary or alternative technique to tables, parametric equations and polynomial fits to estimate DgN values obtained via MC simulations.

中文翻译:

基于人工神经网络的乳腺摄影中腺体剂量的估计。

这项工作建议使用人工神经网络(ANN)进行乳房X线照相术中剂量剂量的回归。数据是通过蒙特卡洛(MC)模拟使用PENELOPE(v。2014)+ penEasy(v。2015)代码的修改和验证版本生成的。采用脂肪和腺组织均匀混合物的乳房模型。使用Keras和scikit-learn库构建ANN,分别用于平均腺体剂量(MGD)和空气比释动能(Kair)回归。总共考虑了七个参数,包括入射光子能量(从8.25到48.75 keV),乳房几何形状,乳房腺体度和Kair采集几何形状。每个五个ANN的两个合奏形成来计算MGD和Kair。使用MGD和Kair的合奏输出比率计算标准化的腺体剂量系数(DgN)。多能DgN值是通过频谱仓概率对单能值加权来计算的。结果表明,与验证数据相比,ANN的预测性能非常好,中位数误差约为平均模拟不确定性(约0.2%)。此外,与以前发表的作品相比,预测的DgN值非常一致,平均(最大)差异高达2.2%(9.4%)。因此,表明人工神经网络可以作为表,参数方程和多项式拟合的补充或替代技术,以估算通过MC模拟获得的DgN值。多能DgN值是通过频谱仓概率对单能值加权来计算的。结果表明,与验证数据相比,ANN预测性能非常好,中值误差约为平均模拟不确定性(约0.2%)。此外,与以前发表的作品相比,预测的DgN值非常吻合,平均(最大)差异高达2.2%(9.4%)。因此,表明人工神经网络可以作为表,参数方程和多项式拟合的补充或替代技术,以估算通过MC模拟获得的DgN值。多能DgN值是通过频谱仓概率对单能值加权来计算的。结果表明,与验证数据相比,ANN预测性能非常好,中值误差约为平均模拟不确定性(约0.2%)。此外,与以前发表的作品相比,预测的DgN值非常吻合,平均(最大)差异高达2.2%(9.4%)。因此,表明人工神经网络可以作为表,参数方程和多项式拟合的补充或替代技术,以估算通过MC模拟获得的DgN值。与以前发表的作品相比,预测的DgN值非常吻合,平均(最大)差异高达2.2%(9.4%)。因此,表明人工神经网络可以作为表,参数方程和多项式拟合的补充或替代技术,以估算通过MC模拟获得的DgN值。与以前发表的作品相比,预测的DgN值非常吻合,平均(最大)差异高达2.2%(9.4%)。因此,表明人工神经网络可以作为表,参数方程和多项式拟合的补充或替代技术,以估算通过MC模拟获得的DgN值。
更新日期:2020-05-10
down
wechat
bug