当前位置: X-MOL 学术Cell. Microbiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Matrix stiffness regulates endosomal escape of uropathogenic E. coli.
Cellular Microbiology ( IF 2.6 ) Pub Date : 2020-03-04 , DOI: 10.1111/cmi.13196
Sudha Moorthy 1 , Fitzroy J Byfield 2 , Paul A Janmey 2, 3 , Eric A Klein 1, 4
Affiliation  

Uropathogenic E. coli (UPEC) infection in vivo is characterized by invasion of bladder umbrella epithelial cells followed by endosomal escape and proliferation in the cytoplasm to form intracellular bacterial communities (IBCs). By contrast, UPEC infection in tissue culture models results in bacteria being trapped within Lamp1-positive endosomes where proliferation is limited. Pharmacological disruption of the actin cytoskeleton has been shown to facilitate UPEC endosomal escape in vitro and extracellular matrix stiffness is a well characterized physiological regulator of actin dynamics; therefore, we hypothesized that substrate stiffness may play a role in UPEC endosomal escape. Using functionalized polyacrylamide substrates, we found that at physiological stiffness, UPEC escaped the endosome and proliferated rapidly in the cytoplasm of bladder epithelial cells. Dissection of the cytoskeletal signaling pathway demonstrated that inhibition of the Rho GTPase RhoB or its effector PRK1 was sufficient to increase cytoplasmic bacterial growth and that RhoB protein level was significantly reduced at physiological stiffness. Our data suggest that tissue stiffness is a critical regulator of intracellular bacterial growth. Due to the ease of doing genetic and pharmacological manipulations in cell culture, this model system may provide a useful tool for performing mechanistic studies on the intracellular life cycle of uropathogens. This article is protected by copyright. All rights reserved.

中文翻译:

基质刚度调节尿毒症性大肠杆菌的内体逃逸。

体内尿毒症性大肠杆菌(UPEC)感染的特征是膀胱伞上皮细胞受到侵袭,然后内体逃逸并在细胞质中增殖,形成细胞内细菌群落(IBC)。相比之下,组织培养模型中的UPEC感染导致细菌被困在Lamp1阳性内体中,而那里的增殖受到限制。肌动蛋白细胞骨架的药理学破坏已显示出促进UPEC内体逃逸的作用,而细胞外基质的硬度则是肌动蛋白动力学的良好生理调节因子。因此,我们假设底物刚度可能在UPEC内体逃逸中起作用。使用功能化的聚丙烯酰胺底物,我们发现在生理刚度下,UPEC逃脱了内体,并在膀胱上皮细胞的细胞质中迅速增殖。解剖细胞骨架信号通路表明,对Rho GTPase RhoB或其效应物PRK1的抑制足以增加细胞质细菌的生长,并且在生理刚度下RhoB蛋白水平显着降低。我们的数据表明组织硬度是细胞内细菌生长的关键调节剂。由于在细胞培养中易于进行遗传和药理学操作,因此该模型系统可能为进行尿路致病菌细胞内生命周期的机理研究提供有用的工具。本文受版权保护。版权所有。解剖细胞骨架信号通路表明,对Rho GTPase RhoB或其效应物PRK1的抑制足以增加细胞质细菌的生长,并且在生理刚度下RhoB蛋白水平显着降低。我们的数据表明组织硬度是细胞内细菌生长的关键调节剂。由于在细胞培养中易于进行遗传和药理操作,因此该模型系统可能为进行尿路致病菌的细胞内生命周期机制研究提供有用的工具。本文受版权保护。版权所有。解剖细胞骨架信号通路表明,对Rho GTPase RhoB或其效应物PRK1的抑制足以增加细胞质细菌的生长,并且在生理刚度下RhoB蛋白水平显着降低。我们的数据表明组织硬度是细胞内细菌生长的关键调节剂。由于在细胞培养中易于进行遗传和药理学操作,因此该模型系统可能为进行尿路致病菌的细胞内生命周期机制研究提供有用的工具。本文受版权保护。版权所有。我们的数据表明组织硬度是细胞内细菌生长的关键调节剂。由于在细胞培养中易于进行遗传和药理操作,因此该模型系统可能为进行尿路致病菌的细胞内生命周期机制研究提供有用的工具。本文受版权保护。版权所有。我们的数据表明组织硬度是细胞内细菌生长的关键调节剂。由于在细胞培养中易于进行遗传和药理学操作,因此该模型系统可能为进行尿路致病菌的细胞内生命周期机制研究提供有用的工具。本文受版权保护。版权所有。
更新日期:2020-04-22
down
wechat
bug