当前位置: X-MOL 学术Artif. Cells Nanomed. Biotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biologically rapid synthesis of silver nanoparticles by Sphingobium sp. MAH-11T and their antibacterial activity and mechanisms investigation against drug-resistant pathogenic microbes.
Artificial Cells, Nanomedicine, and Biotechnology ( IF 4.5 ) Pub Date : 2020-02-21 , DOI: 10.1080/21691401.2020.1730390
Shahina Akter 1 , Md Amdadul Huq 2
Affiliation  

The present study highlights the biological synthesis of silver nanoparticles (AgNPs) using Sphingobium sp. MAH-11 and also their antibacterial mechanisms against drug-resistant pathogenic microorganisms. The nanoparticle synthesis method used in this study was reliable, facile, rapid, cost-effective and ecofriendly. The AgNPs exhibited the highest absorbance at 423 nm. The TEM image expressed spherical shape of AgNPs and the size of synthesized AgNPs was 7-22 nm. The selected area diffraction (SAED) pattern and XRD spectrum revealed the crystalline structure of AgNPs. The results of FTIR analysis disclosed the functional groups responsible for the reduction of silver ion to metal nanoparticles. The biosynthesized AgNPs showed strong anti-microbial activity against drug-resistant pathogenic microorganisms. Moreover, Escherichia coli and Staphylococcus aureus were used to explore the antibacterial mechanisms of biosynthesized AgNPs. Minimal inhibitory concentrations (MICs) of E. coli and S. aureus were 6.25 μg/mL and 50 μg/mL, respectively and minimum bactericidal concentrations (MBCs) of E. coli and S. aureus were 25 μg/mL and 100 μg/mL, respectively. Results exhibited that biosynthesized AgNPs caused morphological changes and injured the membrane integrity of strains E. coli and S. aureus. The AgNPs synthesized by Sphingobium sp. MAH-11 may serve as a potent antimicrobial agent for many therapeutic applications.

中文翻译:

鞘氨醇单胞菌生物快速合成银纳米颗粒。MAH-11T及其抗药性和病原微生物的抗菌活性及机理研究。

本研究着重介绍了使用鞘氨醇单胞菌sp的银纳米颗粒(AgNPs)的生物合成。MAH-11及其抗药性病原微生物的抗菌机制。本研究中使用的纳米粒子合成方法可靠,简便,快速,具有成本效益且生态友好。AgNPs在423 nm处表现出最高的吸光度。TEM图像表示AgNPs的球形,合成的AgNPs的大小为7-22nm。选定的区域衍射(SAED)模式和XRD光谱揭示了AgNPs的晶体结构。FTIR分析的结果揭示了负责将银离子还原为金属纳米粒子的官能团。生物合成的AgNP对耐药性病原微生物表现出强大的抗微生物活性。此外,大肠杆菌和金黄色葡萄球菌被用来探索生物合成AgNPs的抗菌机制。大肠杆菌和金黄色葡萄球菌的最小抑菌浓度(MIC)分别为6.25μg/ mL和50μg/ mL,而大肠杆菌和金黄色葡萄球菌的最小抑菌浓度(MBC)为25μg/ mL和100μg/ mL mL,分别。结果表明,生物合成的AgNPs引起形态学改变并损害了大肠杆菌和金黄色葡萄球菌的膜完整性。Sphingobium sp。合成的AgNP。MAH-11可用作许多治疗应用的有效抗菌剂。大肠杆菌和金黄色葡萄球菌分别为25μg/ mL和100μg/ mL。结果表明,生物合成的AgNPs引起形态学改变并损害了大肠杆菌和金黄色葡萄球菌的膜完整性。Sphingobium sp。合成的AgNP。MAH-11可用作许多治疗应用的有效抗菌剂。大肠杆菌和金黄色葡萄球菌分别为25μg/ mL和100μg/ mL。结果表明,生物合成的AgNPs引起形态变化并损害了大肠杆菌和金黄色葡萄球菌的膜完整性。Sphingobium sp。合成的AgNP。MAH-11可用作许多治疗应用的有效抗菌剂。
更新日期:2020-12-01
down
wechat
bug