当前位置: X-MOL 学术New Phytol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Plant responses to rising vapor pressure deficit.
New Phytologist ( IF 8.3 ) Pub Date : 2020-03-20 , DOI: 10.1111/nph.16485
Charlotte Grossiord 1, 2 , Thomas N Buckley 3 , Lucas A Cernusak 4 , Kimberly A Novick 5 , Benjamin Poulter 6 , Rolf T W Siegwolf 1 , John S Sperry 7 , Nate G McDowell 8
Affiliation  

Recent decades have been characterized by increasing temperatures worldwide, resulting in an exponential climb in vapor pressure deficit (VPD). VPD has been identified as an increasingly important driver of plant functioning in terrestrial biomes and has been established as a major contributor in recent drought-induced plant mortality independent of other drivers associated with climate change. Despite this, few studies have isolated the physiological response of plant functioning to high VPD, thus limiting our understanding and ability to predict future impacts on terrestrial ecosystems. An abundance of evidence suggests that stomatal conductance declines under high VPD and transpiration increases in most species up until a given VPD threshold, leading to a cascade of subsequent impacts including reduced photosynthesis and growth, and higher risks of carbon starvation and hydraulic failure. Incorporation of photosynthetic and hydraulic traits in 'next-generation' land-surface models has the greatest potential for improved prediction of VPD responses at the plant- and global-scale, and will yield more mechanistic simulations of plant responses to a changing climate. By providing a fully integrated framework and evaluation of the impacts of high VPD on plant function, improvements in forecasting and long-term projections of climate impacts can be made.

中文翻译:

植物对不断上升的蒸气压不足的反应。

近几十年来,全球温度升高是其特征,导致蒸汽压亏缺(VPD)呈指数级上升。VPD被认为是陆地生物群落中植物功能日益重要的驱动力,并且已被确定为近期干旱导致植物死亡的主要因素,而与气候变化相关的其他驱动因素无关。尽管如此,很少有研究分离出植物功能对高VPD的生理反应,从而限制了我们的理解和预测未来对陆地生态系统影响的能力。大量证据表明,在高VPD的作用下,气孔导度下降,直到给定的VPD阈值,大多数物种的蒸腾作用增加,从而导致一系列后续影响,包括光合作用和生长减少,以及碳饥饿和水力衰竭的更高风险。将光合和水力性状纳入“下一代”陆地表面模型具有最大的潜力,可以在植物和全球范围内改进对VPD响应的预测,并且将产生更多对气候变化的植物响应的机械模拟。通过提供一个完全集成的框架并评估高VPD对植物功能的影响,可以改善气候影响的预测和长期预测。并将对植物对气候变化的响应进行更多的机械模拟。通过提供一个完全集成的框架并评估高VPD对植物功能的影响,可以改善气候影响的预测和长期预测。并将对植物对气候变化的响应进行更多的机械模拟。通过提供一个完全集成的框架并评估高VPD对植物功能的影响,可以改善气候影响的预测和长期预测。
更新日期:2020-02-17
down
wechat
bug