当前位置: X-MOL 学术Glob. Biogeochem. Cycles › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Insights into the Major Processes Driving the Global Distribution of Copper in the Ocean from a Global Model
Global Biogeochemical Cycles ( IF 5.2 ) Pub Date : 2019-12-01 , DOI: 10.1029/2019gb006280
Camille Richon 1 , Alessandro Tagliabue 1
Affiliation  

Copper (Cu) is an unusual micronutrient as it can limit primary production but can also become toxic for growth and cellular functioning under high concentrations. Cu also displays an atypical linear profile, which will modulate its availability to marine microbes across the ocean. Multiple chemical forms of Cu coexist in seawater as dissolved species and understanding the main processes shaping the Cu biogeochemical cycling is hampered by key knowledge gaps. For instance, the drivers of its specific linear profile in seawater are unknown, and the bioavailable form of Cu for marine phytoplankton is debated. Here we developed a global 3‐D biogeochemical model of oceanic Cu within the NEMO/PISCES global model, which represents the global distribution of dissolved copper well. Using our model, we find that reversible scavenging of Cu by organic particles drives the dissolved Cu vertical profile and its distribution in the deep ocean. The low modeled inorganic copper (Cu') in the surface ocean means that Cu' cannot maintain phytoplankton cellular copper requirements within observed ranges. The global budget of oceanic Cu from our model suggests that its residence time may be shorter than previously estimated and provides a global perspective on Cu cycling and the main drivers of Cu biogeochemistry in different regions. Cu scavenging within particle microenvironments and uptake by denitrifying bacteria could be a significant component of Cu cycling in oxygen minimum zones.

中文翻译:

从全球模型洞察推动全球海洋中铜分布的主要过程

铜 (Cu) 是一种不寻常的微量营养素,因为它可以限制初级生产,但在高浓度下也会对生长和细胞功能产生毒性。Cu 还显示出非典型的线性分布,这将调节其对整个海洋的海洋微生物的可用性。多种化学形式的铜作为溶解物种共存于海水中,并且理解形成铜生物地球化学循环的主要过程受到关键知识空白的阻碍。例如,其在海水中的特定线性分布的驱动因素是未知的,并且对海洋浮游植物的 Cu 的生物可利用形式存在争议。在这里,我们在 NEMO/PISCES 全球模型中开发了海洋铜的全球 3-D 生物地球化学模型,该模型代表了溶解铜的全球分布。使用我们的模型,我们发现有机颗粒对 Cu 的可逆清除驱动了溶解的 Cu 垂直剖面及其在深海中的分布。表层海洋中的低模拟无机铜 (Cu') 意味着 Cu' 无法在观察到的范围内维持浮游植物细胞对铜的需求。我们模型中海洋铜的全球预算表明其停留时间可能比先前估计的要短,并提供了关于铜循环和不同地区铜生物地球化学主要驱动因素的全球视角。颗粒微环境中的铜清除和反硝化细菌的吸收可能是氧最小区铜循环的重要组成部分。) 在海洋表面意味着 Cu' 不能在观察到的范围内维持浮游植物细胞铜需求。我们模型中海洋铜的全球预算表明其停留时间可能比先前估计的要短,并提供了关于铜循环和不同地区铜生物地球化学主要驱动因素的全球视角。颗粒微环境中的铜清除和反硝化细菌的吸收可能是氧最小区铜循环的重要组成部分。) 在海洋表面意味着 Cu' 不能在观察到的范围内维持浮游植物细胞铜需求。我们模型中海洋铜的全球预算表明其停留时间可能比先前估计的要短,并提供了关于铜循环和不同地区铜生物地球化学主要驱动因素的全球视角。颗粒微环境中的铜清除和反硝化细菌的吸收可能是氧最小区铜循环的重要组成部分。
更新日期:2019-12-01
down
wechat
bug