当前位置: X-MOL 学术Biofabrication › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A biofabricated vascularized skin model of atopic dermatitis for preclinical studies.
Biofabrication ( IF 8.2 ) Pub Date : 2020-04-08 , DOI: 10.1088/1758-5090/ab76a1
Xue Liu 1 , Sam Michael , Kapil Bharti , Marc Ferrer , Min Jae Song
Affiliation  

Three-dimensional (3D) biofabrication techniques enable the production of multicellular tissue models as assay platforms for drug screening. The increased cellular and physiological complexity in these 3D tissue models should recapitulate the relevant biological environment found in the body. Here we describe the use of 3D bioprinting techniques to fabricate skin equivalent tissues of varying physiological complexity, including human epidermis, non-vascularized and vascularized full-thickness skin tissue equivalents, in a multi-well platform to enable drug screening. Human keratinocytes, fibroblasts, and pericytes, and induced pluripotent stem cell (iPSC)-derived endothelial cells were used in the biofabrication process to produce the varying complexity. The skin equivalents exhibit the correct structural markers of dermis and epidermis stratification, with physiological functions of the skin barrier. The robustness, versatility and reproducibility of the biofabrication techniques are further highlighted by the generation of atopic dermatitis (AD)-disease like tissues. These AD models demonstrate several clinical hallmarks of the disease, including: (i) spongiosis and hyperplasia; (ii) early and terminal expression of differentiation proteins; and (iii) increases in levels of pro-inflammatory cytokines. We show the pre-clinical relevance of the biofabricated AD tissue models to correct disease phenotype by testing the effects of dexamethasone, an anti-inflammatory corticosteroid, and three Janus Kinase inhibitors from clinical trials for AD. This study demonstrates the development of a versatile and reproducible bioprinting approach to create human skin equivalents with a range of cellular complexity for disease modelling. In addition, we establish several assay readouts that are quantifiable, robust, AD relevant, and can be scaled up for compound screening. The results show that the cellular complexity of the tissues develops a more physiologically relevant AD disease model. Thus, the skin models in this study offer an in vitro approach for the rapid understanding of pathological mechanisms, and testing for efficacy of action and toxic effects of drugs.

中文翻译:

用于临床前研究的特应性皮炎的生物制造的血管化皮肤模型。

三维(3D)生物制造技术使多细胞组织模型的产生成为药物筛选的测定平台。在这些3D组织模型中增加的细胞和生理复杂性应该概括体内发现的相关生物环境。在这里,我们描述了在多孔平台上使用3D生物打印技术来制作具有多种生理复杂性的皮肤等效组织,包括人表皮,非血管化和血管化全厚度皮肤组织等效物,以实现药物筛选。人角质形成细胞,成纤维细胞和周细胞以及诱导多能干细胞(iPSC)衍生的内皮细胞被用于生物制造过程中,以产生不同的复杂性。皮肤等效物具有正确的真皮和表皮分层结构标记,具有皮肤屏障的生理功能。异位性皮炎(AD)-疾病样组织的产生进一步突出了生物制造技术的坚固性,多功能性和可重复性。这些AD模型证明了该疾病的几种临床特征,包括:(i)海绵状变性和增生;(ii)分化蛋白的早期和末端表达;(iii)促炎细胞因子水平增加。我们通过测试地塞米松,一种抗炎皮质类固醇和三种来自AD临床试验的Janus Kinase抑制剂的作用,显示了生物预制的AD组织模型对纠正疾病表型的临床前相关性。这项研究证明了一种通用且可复制的生物打印方法的发展,该方法可创建具有一系列细胞复杂性的人类皮肤等效物用于疾病建模。此外,我们建立了可定量,稳健,与AD相关且可以扩大用于化合物筛选的几种测定读数。结果表明,组织的细胞复杂性发展了更生理相关的AD疾病模型。因此,本研究中的皮肤模型提供了一种体外方法,用于快速了解病理机制,并测试药物的作用功效和毒性作用。并可以扩大规模以进行化合物筛选。结果表明,组织的细胞复杂性发展了更生理相关的AD疾病模型。因此,本研究中的皮肤模型提供了一种体外方法,用于快速了解病理机制,并测试药物的作用功效和毒性作用。并可以扩大规模以进行化合物筛选。结果表明,组织的细胞复杂性发展了更生理相关的AD疾病模型。因此,本研究中的皮肤模型提供了一种体外方法,用于快速了解病理机制,并测试药物的作用功效和毒性作用。
更新日期:2020-04-20
down
wechat
bug