当前位置: X-MOL 学术Enzyme Microb. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Identification of key sites determining the cofactor specificity and improvement of catalytic activity of a steroid 5β-reductase from Capsella rubella
Enzyme and Microbial Technology ( IF 3.4 ) Pub Date : 2020-03-01 , DOI: 10.1016/j.enzmictec.2019.109483
Yuanyuan Li 1 , Hongyan Pan 1 , Yaowen Chang 1 , Na Dong 1 , Lei Zou 1 , Ping Liang 2 , Wei Tian 1 , Zunxue Chang 1
Affiliation  

Progesterone 5β-reductases (P5βRs) are involved in 5β-cardenolide formation by stereo-specific reduction of the △4,5 double bond of steroid precursors. In this study a steroid 5β-reductase was identified in Capsella rubella (CrSt5βR1) and its function in steroid 5β-reduction was validated experimentally. CrSt5βR1 is capable of enantioselectively reducing the activated CC bond of broad substrates such as steroids and enones by using NADPH as a cofactor and therefore has the potential as a biocatalyst in organic synthesis. However, for industrial purposes the cheaper NADH is the preferred cofactor. By applying rational design based on literature and complementary mutagenesis strategies, we successfully identified two key amino acid residues determining the cofactor specificity of the enzyme. The R63 K mutation enables the enzyme to convert progesterone to 5β-pregnane-3,20-dione with NADH as cofactor, whereas the wild-type CrSt5βR1 is strictly NADPH-dependent. By further introducing the R64H mutation, the double mutant R63K_R64H of CrSt5βR1 was shown to increase enzymatic activity by13.8-fold with NADH as a cofactor and to increase the NADH/NADPH conversion ratio by 10.9-fold over the R63 K single mutant. This finding was successfully applied to change the cofactor specificity and to improve activity of other members of the same enzyme family, AtP5βR and DlP5βR. CrSt5βR1 mutants are expected to have the potential for biotechnological applications in combination with the well-established NADH regeneration systems.

中文翻译:

确定关键位点决定辅助因子特异性和提高来自 Capsella rubella 的类固醇 5β-还原酶的催化活性

孕酮 5β-还原酶 (P5βRs) 通过立体特异性还原类固醇前体的 △4,5 双键参与 5β-cardenolide 的形成。在这项研究中,在 Capsella rubella (CrSt5βR1) 中鉴定了类固醇 5β-还原酶,并通过实验验证了其在类固醇 5β-还原中的功能。CrSt5βR1 能够通过使用 NADPH 作为辅助因子,对映选择性地还原广泛底物(如类固醇和烯酮)的活化 CC 键,因此具有作为有机合成中生物催化剂的潜力。然而,出于工业目的,更便宜的 NADH 是首选的辅助因子。通过应用基于文献和互补诱变策略的合理设计,我们成功鉴定了决定酶辅因子特异性的两个关键氨基酸残基。R63 K 突变使酶能够以 NADH 作为辅因子将孕酮转化为 5β-孕烷-3,20-二酮,而野生型 CrSt5βR1 则严格依赖于 NADPH。通过进一步引入 R64H 突变,CrSt5βR1 的双突变体 R63K_R64H 显示出以 NADH 作为辅因子将酶活性提高 13.8 倍,并使 NADH/NADPH 转化率比 R63 K 单突变体提高 10.9 倍。这一发现已成功应用于改变辅因子特异性并提高同一酶家族其他成员 AtP5βR 和 DlP5βR 的活性。CrSt5βR1 突变体有望与成熟的 NADH 再生系统相结合,具有生物技术应用的潜力。通过进一步引入 R64H 突变,CrSt5βR1 的双突变体 R63K_R64H 显示出以 NADH 作为辅因子将酶活性提高 13.8 倍,并使 NADH/NADPH 转化率比 R63 K 单突变体提高 10.9 倍。这一发现已成功应用于改变辅因子特异性并提高同一酶家族其他成员 AtP5βR 和 DlP5βR 的活性。CrSt5βR1 突变体有望与成熟的 NADH 再生系统相结合,具有生物技术应用的潜力。通过进一步引入 R64H 突变,CrSt5βR1 的双突变体 R63K_R64H 显示出以 NADH 作为辅因子将酶活性提高 13.8 倍,并使 NADH/NADPH 转化率比 R63 K 单突变体提高 10.9 倍。这一发现已成功应用于改变辅因子特异性并提高同一酶家族其他成员 AtP5βR 和 DlP5βR 的活性。CrSt5βR1 突变体有望与成熟的 NADH 再生系统相结合,具有生物技术应用的潜力。这一发现已成功应用于改变辅因子特异性并提高同一酶家族其他成员 AtP5βR 和 DlP5βR 的活性。CrSt5βR1 突变体有望与成熟的 NADH 再生系统相结合,具有生物技术应用的潜力。这一发现已成功应用于改变辅因子特异性并提高同一酶家族其他成员 AtP5βR 和 DlP5βR 的活性。CrSt5βR1 突变体有望与成熟的 NADH 再生系统相结合,具有生物技术应用的潜力。
更新日期:2020-03-01
down
wechat
bug