当前位置: X-MOL 学术J. Neurogenet. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cellular and circuit mechanisms of olfactory associative learning in Drosophila.
Journal of Neurogenetics ( IF 1.8 ) Pub Date : 2020-02-11 , DOI: 10.1080/01677063.2020.1715971
Tamara Boto 1 , Aaron Stahl 1 , Seth M Tomchik 1
Affiliation  

Recent years have witnessed significant progress in understanding how memories are encoded, from the molecular to the cellular and the circuit/systems levels. With a good compromise between brain complexity and behavioral sophistication, the fruit fly Drosophila melanogaster is one of the preeminent animal models of learning and memory. Here we review how memories are encoded in Drosophila, with a focus on short-term memory and an eye toward future directions. Forward genetic screens have revealed a large number of genes and transcripts necessary for learning and memory, some acting cell-autonomously. Further, the relative numerical simplicity of the fly brain has enabled the reverse engineering of learning circuits with remarkable precision, in some cases ascribing behavioral phenotypes to single neurons. Functional imaging and physiological studies have localized and parsed the plasticity that occurs during learning at some of the major loci. Connectomics projects are significantly expanding anatomical knowledge of the nervous system, filling out the roadmap for ongoing functional/physiological and behavioral studies, which are being accelerated by simultaneous tool development. These developments have provided unprecedented insight into the fundamental neural principles of learning, and lay the groundwork for deep understanding in the near future.

中文翻译:

果蝇嗅觉联想学习的细胞和电路机制。

近年来,在理解记忆如何编码方面取得了重大进展,从分子到细胞和电路/系统水平。黑腹果蝇在大脑复杂性和行为复杂性之间取得了良好的平衡,是学习和记忆的卓越动物模型之一。在这里,我们回顾了记忆是如何在果蝇中编码的,重点是短期记忆,并着眼于未来的方向。正向遗传筛选揭示了学习和记忆所必需的大量基因和转录本,其中一些是细胞自主作用的。此外,苍蝇大脑的相对简单的数值使得能够以非凡的精度对学习回路进行逆向工程,在某些情况下将行为表型归因于单个神经元。功能成像和生理学研究已经定位和解析了在某些主要位点学习过程中发生的可塑性。Connectomics 项目正在显着扩展神经系统的解剖学知识,为正在进行的功能/生理和行为研究制定路线图,同时工具开发正在加速这些研究。这些发展为学习的基本神经原理提供了前所未有的洞察力,并为在不久的将来深入理解奠定了基础。同步工具开发正在加速这些过程。这些发展为学习的基本神经原理提供了前所未有的洞察力,并为在不久的将来深入理解奠定了基础。同步工具开发正在加速这些过程。这些发展为学习的基本神经原理提供了前所未有的洞察力,并为在不久的将来深入理解奠定了基础。
更新日期:2020-02-11
down
wechat
bug