当前位置: X-MOL 学术Annu. Rev. Biophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Temperature, Dynamics, and Enzyme-Catalyzed Reaction Rates.
Annual Review of Biophysics ( IF 12.4 ) Pub Date : 2020-02-04 , DOI: 10.1146/annurev-biophys-121219-081520
Vickery L Arcus 1 , Adrian J Mulholland 2
Affiliation  

We review the adaptations of enzyme activity to different temperatures. Psychrophilic (cold-adapted) enzymes show significantly different activation parameters (lower activation enthalpies and entropies) from their mesophilic counterparts. Furthermore, there is increasing evidence that the temperature dependence of many enzyme-catalyzed reactions is more complex than is widely believed. Many enzymes show curvature in plots of activity versus temperature that is not accounted for by denaturation or unfolding. This is explained by macromolecular rate theory: A negative activation heat capacity for the rate-limiting chemical step leads directly to predictions of temperature optima; both entropy and enthalpy are temperature dependent. Fluctuations in the transition state ensemble are reduced compared to the ground state. We show how investigations combining experiment with molecular simulation are revealing fundamental details of enzyme thermoadaptation that are relevant for understanding aspects of enzyme evolution. Simulations can calculate relevant thermodynamic properties (such as activation enthalpies, entropies, and heat capacities) and reveal the molecular mechanisms underlying experimentally observed behavior.

中文翻译:

温度、动力学和酶催化反应速率。

我们回顾了酶活性对不同温度的适应性。嗜冷(冷适应)酶显示出与其嗜温对应物显着不同的激活参数(较低的激活焓和熵)。此外,越来越多的证据表明,许多酶催化反应的温度依赖性比人们普遍认为的要复杂。许多酶在活性与温度的关系图中显示曲率,这不是由变性或展开引起的。这可以用大分子速率理论来解释:限速化学步骤的负活化热容量直接导致温度最优的预测;熵和焓都与温度有关。与基态相比,过渡态系综的波动有所减少。我们展示了将实验与分子模拟相结合的研究如何揭示酶热适应的基本细节,这些细节与理解酶进化的各个方面有关。模拟可以计算相关的热力学性质(例如活化焓、熵和热容量)并揭示实验观察到的行为背后的分子机制。
更新日期:2020-05-06
down
wechat
bug