当前位置: X-MOL 学术Biomed. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D printing of silver-doped polycaprolactone-poly(propylene succinate) composite scaffolds for skin tissue engineering.
Biomedical Materials ( IF 3.9 ) Pub Date : 2020-04-15 , DOI: 10.1088/1748-605x/ab7417
Ferdows Afghah 1 , Mohib Ullah , Jamal Seyyed Monfared Zanjani , Pinar Akkus Sut , Ozlem Sen , Melis Emanet , Burcu Saner Okan , Mustafa Culha , Yusuf Menceloglu , Mehmet Yildiz , Bahattin Koc
Affiliation  

Scaffold-based tissue engineering approaches have been commonly used for skin regeneration or wound healings caused by diseases or trauma. For an ideal complete healing process, scaffold structures need to meet the criteria of biocompatibility, biodegradability, and antimicrobial properties, as well as to provide geometrical necessities for the regeneration of damaged tissue. In this study, design, synthesis and characterization of a three dimensional (3D) printable copolymer based on polycaprolactone-block-poly(1,3-propylene succinate) (PCL-PPSu) including anti-microbial silver particles is presented. 3D printing of PCL-PPSu copolymers provided a lower processing temperature compared to neat PCL, hence, inclusion of temperature-sensitive bioactive reagents into the developed copolymer could be realized. In addition, 3D printed block copolymer showed an enhanced hydrolytic and enzymatic degradation behavior. Cell viability and cytotoxicity of the developed copolymer were evaluated by using human dermal fibroblast (HDF) cells. The addition of silver nitrate within the polymer matrix resulted in a significant decrease in the adhesion of different types of microorganisms on the scaffold without inducing any cytotoxicity on HDF cells in vitro. The results suggested that 3D printed PCL-PPSu scaffolds containing anti-microbial silver particles could be considered as a promising biomaterial for emerging skin regenerative therapies, in the light of its adaptability to 3D printing technology, low-processing temperature, enhanced degradation behavior and antimicrobial properties.

中文翻译:

用于皮肤组织工程的掺银聚己内酯-聚琥珀酸丙二酯复合支架的3D打印。

基于支架的组织工程方法已普遍用于由疾病或创伤引起的皮肤再生或伤口愈合。为了实现理想的完整愈合过程,支架结构需要满足生物相容性,生物降解性和抗菌性能的标准,并为受损组织的再生提供几何上的必要性。在这项研究中,设计,合成和表征的三维(3D)可印刷的共聚物基于聚己内酯嵌段聚(1,3-丙二酸琥珀酸酯)(PCL-PPSu)包括抗菌银颗粒。与纯PCL相比,PCL-PPSu共聚物的3D打印提供了更低的加工温度,因此,可以实现将温度敏感的生物活性试剂包含到开发的共聚物中。此外,3D打印的嵌段共聚物显示出增强的水解和酶促降解行为。通过使用人类皮肤成纤维细胞(HDF)细胞评估了开发的共聚物的细胞活力和细胞毒性。在聚合物基质中添加硝酸银导致支架上不同类型微生物的粘附力显着降低,而不会在体外对HDF细胞产生任何细胞毒性。结果表明,鉴于其对3D打印技术的适应性,较低的加工温度,增强的降解行为和抗菌剂,包含抗微生物银颗粒的3D打印PCL-PPSu支架可被视为新兴的皮肤再生疗法的有前途的生物材料。属性。通过使用人类皮肤成纤维细胞(HDF)细胞评估了开发的共聚物的细胞活力和细胞毒性。在聚合物基质中添加硝酸银导致支架上不同类型微生物的粘附力显着降低,而不会在体外对HDF细胞产生任何细胞毒性。结果表明,鉴于其对3D打印技术的适应性,较低的加工温度,增强的降解行为和抗菌剂,包含抗微生物银颗粒的3D打印PCL-PPSu支架可被视为新兴的皮肤再生疗法的有前途的生物材料。属性。通过使用人类皮肤成纤维细胞(HDF)细胞评估了开发的共聚物的细胞活力和细胞毒性。在聚合物基质中添加硝酸银导致支架上不同类型微生物的粘附力显着降低,而不会在体外对HDF细胞产生任何细胞毒性。结果表明,鉴于其对3D打印技术的适应性,较低的加工温度,增强的降解行为和抗菌剂,包含抗微生物银颗粒的3D打印PCL-PPSu支架可被视为新兴的皮肤再生疗法的有前途的生物材料。属性。在聚合物基质中添加硝酸银导致支架上不同类型微生物的粘附力显着降低,而不会在体外对HDF细胞产生任何细胞毒性。结果表明,鉴于其对3D打印技术的适应性,较低的加工温度,增强的降解行为和抗菌剂,包含抗微生物银颗粒的3D打印PCL-PPSu支架可被视为新兴的皮肤再生疗法的有前途的生物材料。属性。在聚合物基质中添加硝酸银导致支架上不同类型微生物的粘附力显着降低,而不会在体外对HDF细胞产生任何细胞毒性。结果表明,鉴于其对3D打印技术的适应性,较低的加工温度,增强的降解行为和抗菌剂,包含抗微生物银颗粒的3D打印PCL-PPSu支架可被视为新兴的皮肤再生疗法的有前途的生物材料。属性。
更新日期:2020-04-14
down
wechat
bug