当前位置: X-MOL 学术IEEE Trans. Biomed. Circuits Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Accurate, Very Low Computational Complexity Spike Sorting Using Unsupervised Matched Subspace Learning.
IEEE Transactions on Biomedical Circuits and Systems ( IF 3.8 ) Pub Date : 2020-02-04 , DOI: 10.1109/tbcas.2020.2969910
Majid Zamani , Jure Sokolic , Dai Jiang , Francesco Renna , Miguel R. D. Rodrigues , Andreas Demosthenous

This paper presents an adaptable dictionary-based feature extraction approach for spike sorting offering high accuracy and low computational complexity for implantable applications. It extracts and learns identifiable features from evolving subspaces through matched unsupervised subspace filtering. To provide compatibility with the strict constraints in implantable devices such as the chip area and power budget, the dictionary contains arrays of {[Formula: see text] and the algorithm need only process addition and subtraction operations. Three types of such dictionary were considered. To quantify and compare the performance of the resulting three feature extractors with existing systems, a neural signal simulator based on several different libraries was developed. For noise levels σN between 0.05 and 0.3 and groups of 3 to 6 clusters, all three feature extractors provide robust high performance with average classification errors of less than 8% over five iterations, each consisting of 100 generated data segments. To our knowledge, the proposed adaptive feature extractors are the first able to classify reliably 6 clusters for implantable applications. An ASIC implementation of the best performing dictionary-based feature extractor was synthesized in a 65-nm CMOS process. It occupies an area of 0.09 mm2 and dissipates up to about 10.48 μW from a 1 V supply voltage, when operating with 8-bit resolution at 30 kHz operating frequency.

中文翻译:

使用无监督匹配子空间学习的准确、非常低的计算复杂度尖峰排序。

本文提出了一种基于字典的自适应特征提取方法,用于尖峰排序,为植入式应用提供高精度和低计算复杂度。它通过匹配的无监督子空间过滤从进化的子空间中提取和学习可识别的特征。为了兼容植入式设备的芯片面积和功率预算等严格限制,字典包含{[公式:见文本]数组,算法只需要处理加法和减法运算。考虑了三种类型的这种字典。为了量化和比较所得的三个特征提取器与现有系统的性能,开发了一个基于几个不同库的神经信号模拟器。对于 0.05 和 0.3 之间的噪声水平 σN 和 3 到 6 个簇的组,所有三个特征提取器都提供了强大的高性能,在五次迭代中平均分类错误率低于 8%,每次迭代包含 100 个生成的数据段。据我们所知,所提出的自适应特征提取器是第一个能够为可植入应用程序可靠地分类 6 个簇的方法。性能最佳的基于字典的特征提取器的 ASIC 实现是在 65 纳米 CMOS 工艺中合成的。当在 30 kHz 工作频率下以 8 位分辨率工作时,它占据 0.09 mm2 的面积并从 1 V 电源电压耗散高达约 10.48 μW。所提出的自适应特征提取器是第一个能够可靠地对植入式应用程序的 6 个簇进行分类的。性能最佳的基于字典的特征提取器的 ASIC 实现是在 65 纳米 CMOS 工艺中合成的。当在 30 kHz 工作频率下以 8 位分辨率工作时,它占据 0.09 mm2 的面积并从 1 V 电源电压耗散高达约 10.48 μW。所提出的自适应特征提取器是第一个能够可靠地对植入式应用程序的 6 个簇进行分类的。性能最佳的基于字典的特征提取器的 ASIC 实现是在 65 纳米 CMOS 工艺中合成的。当在 30 kHz 工作频率下以 8 位分辨率工作时,它占据 0.09 mm2 的面积并从 1 V 电源电压耗散高达约 10.48 μW。
更新日期:2020-04-22
down
wechat
bug