当前位置: X-MOL 学术Int. J. Biochem. Cell Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Inner mitochondrial membrane compartmentalization: Dynamics across scales.
The International Journal of Biochemistry & Cell Biology ( IF 3.4 ) Pub Date : 2020-01-10 , DOI: 10.1016/j.biocel.2020.105694
Karin B Busch 1
Affiliation  

Mitochondria are known as dynamic organelles that fuse and divide under the control of certain proteins. These dynamics are important to shape mitochondria, maintain a healthy mitochondrial population, and enable physiological adaptations, to name just a few key processes. We are less aware that mitochondrial membrane lipids and proteins also exhibit dynamics in terms of lateral mobility and translocation. This single molecule dynamics is equally important for the above processes as it enables interaction with other proteins and complexes. Here we discuss some mitochondrial proteins and the role of their specific dynamic spatiotemporal organization for function and adaptation. For example, respiratory proteins are preferentially localized in cristae sheets, ATP synthase at the edges of cristae and compounds of the MICOS complex at cristae junctions. Trajectory patterns show how and whether molecules are restricted in their mobility and how this determines their distribution. The formation of supercomplexes has an influence on this. Recent studies have also shown that the distribution of proteins is not absolutely static. For example, the metabolic state of the cell obviously determines the activity of the mitochondria and finally the organization of the bioenergetic and structure-determining proteins inside. The ATP synthase has both classifications and additionally shows functional interactions with other cristae shaping proteins at cristae junctions. To understand the dynamics of mitochondria we have to consider all scales: from the dynamics of the molecular structure of the proteins to the dynamics of the molecules with respect to their localization and lateral mobility to the dynamics of the organelle structure.



中文翻译:

线粒体内膜区室化:跨尺度的动力学。

线粒体被称为动态细胞器,在某些蛋白质的控制下融合并分裂。这些动力学对于塑造线粒体,维持健康的线粒体种群以及实现生理适应非常重要,仅举几个关键过程。我们鲜为人知的是线粒体膜脂质和蛋白质在横向迁移和易位方面也表现出动力学。这种单分子动力学对于上述过程同样重要,因为它可以与其他蛋白质和复合物相互作用。在这里,我们讨论了一些线粒体蛋白及其特定的动态时空组织对于功能和适应性的作用。例如,呼吸蛋白优先位于cr片中,ista边缘的ATP合酶和cr连接处的MICOS复合物的化合物。轨迹模式显示了分子如何以及是否受到限制,以及如何确定其分布。超复合物的形成对此具有影响。最近的研究也表明蛋白质的分布不是绝对静态的。例如,细胞的代谢状态显然决定了线粒体的活性,最终决定了内部的生物能和结构决定蛋白的组织。ATP合酶既有分类,又在cr连接处显示与其他cr成型蛋白的功能相互作用。要了解线粒体的动力学,我们必须考虑所有尺度:

更新日期:2020-01-10
down
wechat
bug