当前位置: X-MOL 学术J. Biomech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Knee abduction moment is predicted by lower gluteus medius force and larger vertical and lateral ground reaction forces during drop vertical jump in female athletes.
Journal of Biomechanics ( IF 2.4 ) Pub Date : 2020-01-27 , DOI: 10.1016/j.jbiomech.2020.109669
Ryo Ueno 1 , Alessandro Navacchia 1 , Christopher A DiCesare 2 , Kevin R Ford 3 , Gregory D Myer 4 , Tomoya Ishida 5 , Harukazu Tohyama 5 , Timothy E Hewett 6
Affiliation  

Prospective knee abduction moments measured during the drop vertical jump task identify those at increased risk for anterior cruciate ligament injury. The purpose of this study was to determine which muscle forces and frontal plane biomechanical features contribute to large knee abduction moments. Thirteen young female athletes performed three drop vertical jump trials. Subject-specific musculoskeletal models and electromyography-informed simulations were developed to calculate the frontal plane biomechanics and lower limb muscle forces. The relationships between knee abduction moment and frontal plane biomechanics were examined. Knee abduction moment was positively correlated to vertical (R = 0.522, P < 0.001) and lateral ground reaction forces (R = 0.395, P = 0.016), hip adduction angle (R = 0.358, P < 0.023) and lateral pelvic tilt (R = 0.311, P = 0.061). A multiple regression showed that knee abduction moment was predicted by reduced gluteus medius force and increased vertical and lateral ground reaction forces (P < 0.001, R2 = 0.640). Hip adduction is indicative of lateral pelvic shift during landing. The coupled hip adduction and lateral pelvic tilt were associated to the increased vertical and lateral ground reaction forces, propagating into higher knee abduction moments. These biomechanical features are associated with ACL injury and may be limited in a landing with increased activation of the gluteus medius. Targeted neuromuscular training to control the frontal pelvic and hip motion may help to avoid injurious ground reaction forces and consequent knee abduction moment and ACL injury risk.

中文翻译:

在女性运动员摔落垂直跳动过程中,膝关节外展力矩是由较低的臀中肌力以及较大的垂直和横向地面反作用力预测的。

在跌落垂直跳跃任务中测量的预期膝关节外展力矩识别出前交叉韧带受伤风险增加的人。这项研究的目的是确定哪些肌肉力量和额面生物力学特征有助于大的膝关节外展力矩。十三名年轻的女运动员进行了三项垂直跳投试验。开发了特定于受试者的肌肉骨骼模型和肌电图知悉的模拟,以计算额面生物力学和下肢肌肉力。研究了膝关节外展力矩与额叶生物力学之间的关系。膝关节外展力矩与垂直(R = 0.522,P <0.001)和侧向地面反作用力(R = 0.395,P = 0.016),髋关节内收角(R = 0.358,P <0.023)和骨盆侧向倾斜(R)呈正相关。 = 0。311,P = 0.061)。多元回归分析表明,由于臀中肌力减小,地面和侧面地面反作用力增大,可以预测膝外展力矩(P <0.001,R2 = 0.640)。髋关节内收指示着陆期间骨盆的横向移位。髋关节内收和骨盆外侧倾斜的耦合与增加的垂直和侧面地面反作用力有关,并传播到较高的膝盖外展力矩中。这些生物力学特征与ACL损伤有关,可能由于臀中肌激活增加而受到限制。进行有针对性的神经肌肉训练,以控制额骨盆和髋关节的运动,可能有助于避免伤害性地面反作用力以及随之而来的膝关节外展力矩和ACL损伤风险。多元回归分析表明,由于臀中肌力减小,地面和侧面地面反作用力增大,可以预测膝外展力矩(P <0.001,R2 = 0.640)。髋关节内收指示着陆期间骨盆的横向移位。髋关节内收和骨盆外侧倾斜的耦合与增加的垂直和侧面地面反作用力有关,并传播到较高的膝盖外展力矩中。这些生物力学特征与ACL损伤有关,可能由于臀中肌激活增加而受到限制。进行有针对性的神经肌肉训练,以控制额骨盆和髋关节的运动,可能有助于避免伤害性地面反作用力以及随之而来的膝关节外展力矩和ACL损伤风险。多元回归分析表明,由于臀中肌力减小,地面和侧面地面反作用力增大,可以预测膝外展力矩(P <0.001,R2 = 0.640)。髋关节内收指示着陆期间骨盆的横向移位。髋关节内收和骨盆外侧倾斜的耦合与增加的垂直和侧面地面反作用力有关,并传播到较高的膝盖外展力矩。这些生物力学特征与ACL损伤有关,可能由于臀中肌激活增加而受到限制。进行有针对性的神经肌肉训练,以控制额骨盆和髋关节的运动,可能有助于避免伤害性地面反作用力以及随之而来的膝关节外展力矩和ACL损伤风险。0.001,R2 = 0.640)。髋关节内收指示着陆期间骨盆的横向移位。髋关节内收和骨盆外侧倾斜的耦合与增加的垂直和侧面地面反作用力有关,并传播到较高的膝盖外展力矩中。这些生物力学特征与ACL损伤有关,可能由于臀中肌激活增加而受到限制。进行有针对性的神经肌肉训练,以控制额骨盆和髋关节的运动,可能有助于避免伤害性地面反作用力以及随之而来的膝关节外展力矩和ACL损伤风险。0.001,R2 = 0.640)。髋关节内收指示着陆期间骨盆的横向移位。髋关节内收和骨盆外侧倾斜的耦合与增加的垂直和侧面地面反作用力有关,并传播到较高的膝盖外展力矩中。这些生物力学特征与ACL损伤有关,可能由于臀中肌激活增加而受到限制。进行有针对性的神经肌肉训练,以控制额骨盆和髋关节的运动,可能有助于避免伤害性地面反作用力以及随之而来的膝关节外展力矩和ACL损伤风险。这些生物力学特征与ACL损伤有关,并可能由于臀中肌的激活增加而受到限制。进行有针对性的神经肌肉训练,以控制额骨盆和臀部运动,可能有助于避免地面反作用力以及随之而来的膝关节外展力矩和ACL损伤风险。这些生物力学特征与ACL损伤有关,可能由于臀中肌激活增加而受到限制。进行有针对性的神经肌肉训练,以控制额骨盆和髋关节的运动,可能有助于避免伤害性地面反作用力以及随之而来的膝关节外展力矩和ACL损伤风险。
更新日期:2020-04-21
down
wechat
bug