当前位置: X-MOL 学术J. Drug Target. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biointerface: a nano-modulated way for biological transportation.
Journal of Drug Targeting ( IF 4.3 ) Pub Date : 2020-02-03 , DOI: 10.1080/1061186x.2020.1720218
Pravin Shende 1 , Varun S Wakade 1
Affiliation  

The concept of biointerface emerges in the fields of biochemistry, genomics, cellular biology and life science. The integration of nanoparticles and biointerfaces creates the scope in different areas like biology, biochemistry, biotechnology and microbiology. The mode of action of nanoparticles through biointerface involves the formation of the protein corona, cellular contact, endocytosis and intracellular transport. The article highlights the complexation of host-guest and types of biointerfaces based on the principles of light, pH, redox reaction and competitive binding. Three major theories include Arrhenius theory, interfacial theory and electron theory. Apart from electron transfer, polymer complexation and kinetic drug release, the energy of activation play an important role in the formation of biointerface. The applications of nano-biointerface include cell patterning, gene delivery, blood-contacting device and cancer therapy. The review article focuses on the potential of biointerface in nano-based systems due to longer contact time, higher surface area, better drug loading efficiency and adhesion for increasing lift-off force, cell penetration, drug delivery of nanocarriers and on-targeting effect to the infected cells. Further, advancement in this field will increase the efficiency of gaseous systems like nanobubbles, nanodroplets, nanoshells, nanocages and nanopopcorn.

中文翻译:

生物界面:一种用于生物运输的纳米调制方式。

生物界面的概念出现在生物化学、基因组学、细胞生物学和生命科学领域。纳米粒子和生物界面的整合在生物学、生物化学、生物技术和微生物学等不同领域创造了范围。纳米粒子通过生物界面的作用方式涉及蛋白质冠的形成、细胞接触、内吞作用和细胞内转运。文章重点介绍了基于光、pH、氧化还原反应和竞争性结合原理的主客体和生物界面类型的复合。三大理论包括阿伦尼乌斯理论、界面理论和电子理论。除了电子转移、聚合物络合和动力学药物释放外,活化能在生物界面的形成中也起着重要作用。纳米生物界面的应用包括细胞图案化、基因传递、血液接触装置和癌症治疗。这篇综述文章重点介绍了生物界面在纳米系统中的潜力,因为它具有更长的接触时间、更高的表面积、更好的载药效率和粘附力,以增加剥离力、细胞渗透、纳米载体的药物递送和靶向作用。受感染的细胞。此外,该领域的进步将提高气体系统的效率,如纳米气泡、纳米液滴、纳米壳、纳米笼和纳米爆米花。更好的载药效率和粘附力,以增加剥离力、细胞渗透、纳米载体的药物递送和对受感染细胞的靶向效应。此外,该领域的进步将提高气体系统的效率,如纳米气泡、纳米液滴、纳米壳、纳米笼和纳米爆米花。更好的载药效率和粘附力,以增加剥离力、细胞渗透、纳米载体的药物递送和对受感染细胞的靶向效应。此外,该领域的进步将提高气体系统的效率,如纳米气泡、纳米液滴、纳米壳、纳米笼和纳米爆米花。
更新日期:2020-02-03
down
wechat
bug