当前位置: X-MOL 学术FEMS Yeast Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deletion of the Golgi Ca2+-ATPase PMR1 gene potentiates antifungal effects of dodecanol that depend on intracellular Ca2+ accumulation in budding yeast.
FEMS Yeast Research ( IF 2.4 ) Pub Date : 2020-02-01 , DOI: 10.1093/femsyr/foaa003
Masahiro Oyama 1 , Hiroyuki Tamaki 1 , Yoshihiro Yamaguchi 1 , Akira Ogita 1, 2 , Toshio Tanaka 1 , Ken-Ichi Fujita 1
Affiliation  

One strategy for overcoming infectious diseases caused by drug-resistant fungi involves combining drugs rendered inactive by resistance with agents targeting the drug resistance mechanism. The antifungal activity of n-dodecanol disappears as incubation time passes. In Saccharomyces cerevisiae, anethole, a principal component of anise oil, prolongs the transient antifungal effect of dodecanol by downregulating genes of multidrug efflux pumps, mainly PDR5. However, the detailed mechanisms of dodecanol's antifungal action and the anethole-induced prolonged antifungal action of dodecanol are unknown. Screening of S. cerevisiae strains lacking genes related to Ca2+ homeostasis and signaling identified a pmr1Δ strain lacking Golgi Ca2+-ATPase as more sensitive to dodecanol than the parental strain. Dodecanol and the dodecanol + anethole combination significantly increased intracellular Ca2+ levels in both strains, but the mutant failed to clear intracellular Ca2+ accumulation. Further, dodecanol and the drug combination reduced PMR1 expression and did not lead to specific localization of Pmr1p in the parental strain after 4-h treatment. By contrast with the parental strain, dodecanol did not stimulate PDR5 expression in pmr1Δ. Based on these observations, we propose that the antifungal activity of dodecanol is related to intracellular Ca2+ accumulation, possibly dependent on PMR1 function, with anethole enabling Ca2+ accumulation by restricting dodecanol efflux.

中文翻译:

高尔基族Ca2 + -ATPase PMR1基因的缺失增强了十二烷醇的抗真菌作用,该作用取决于发芽酵母中细胞内Ca2 +的积累。

克服由抗药性真菌引起的感染性疾病的一种策略涉及将由于抗药性而失去活性的药物与靶向抗药性机制的药物相结合。随着培养时间的流逝,正十二烷醇的抗真菌活性消失。在酿酒酵母中,茴香油是茴香油的主要成分,它通过下调多种药物外排泵(主要是PDR5)的基因来延长十二烷醇的瞬时抗真菌作用。但是,十二烷醇的抗真菌作用的详细机制和十二烷醇对茴香脑诱导的长期抗真菌作用的作用尚不清楚。缺乏与Ca2 +稳态相关基因的酿酒酵母菌株的筛选和信号转导鉴定出,缺少高尔基Ca2 + -ATPase的pmr1Δ菌株比十二烷醇对十二烷醇的敏感性要高于亲本菌株。十二烷醇和十二烷醇+茴香脑的组合在两个菌株中均显着增加了细胞内Ca2 +的水平,但该突变体未能清除细胞内Ca2 +的积累。此外,十二烷醇和该药物组合降低了PMR1表达,并且在4小时治疗后未导致Pmr1p在亲本菌株中的特异性定位。与亲本菌株相比,十二烷醇不刺激pmr1Δ中的PDR5表达。基于这些观察结果,我们建议十二烷醇的抗真菌活性与细胞内Ca2 +积累有关,可能取决于PMR1功能,而茴香脑通过限制十二烷醇的流出使Ca2 +积累。12小时后,十二烷醇和药物组合降低了PMR1表达,并且未导致Pmr1p在亲本菌株中发生特异性定位。与亲本菌株相比,十二烷醇不刺激pmr1Δ中的PDR5表达。基于这些观察结果,我们建议十二烷醇的抗真菌活性与细胞内Ca2 +积累有关,可能取决于PMR1功能,而茴香脑通过限制十二烷醇的流出使Ca2 +积累。十二烷醇和该药物组合降低了PMR1表达,并且在4小时处理后未导致Pmr1p在亲本菌株中发生特异性定位。与亲本菌株相比,十二烷醇不刺激pmr1Δ中的PDR5表达。基于这些观察,我们建议十二烷醇的抗真菌活性与细胞内Ca2 +积累有关,可能取决于PMR1功能,而茴香脑通过限制十二烷醇的流出使Ca2 +积累。
更新日期:2020-01-15
down
wechat
bug