当前位置: X-MOL 学术FEMS Yeast Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose.
FEMS Yeast Research ( IF 2.4 ) Pub Date : 2020-02-01 , DOI: 10.1093/femsyr/foz089
Eun Joong Oh 1 , Yong-Su Jin 2, 3, 4
Affiliation  

Conversion of lignocellulosic biomass to biofuels using microbial fermentation is an attractive option to substitute petroleum-based production economically and sustainably. The substantial efforts to design yeast strains for biomass hydrolysis have led to industrially applicable biological routes. Saccharomyces cerevisiae is a robust microbial platform widely used in biofuel production, based on its amenability to systems and synthetic biology tools. The critical challenges for the efficient microbial conversion of lignocellulosic biomass by engineered S. cerevisiae include heterologous expression of cellulolytic enzymes, co-fermentation of hexose and pentose sugars, and robustness against various stresses. Scientists developed many engineering strategies for cellulolytic S. cerevisiae strains, bringing the application of consolidated bioprocess at an industrial scale. Recent advances in the development and implementation of engineered yeast strains capable of assimilating lignocellulose will be reviewed.

中文翻译:

酿酒酵母工程改造纤维素的有效发酵。

使用微生物发酵将木质纤维素生物质转化为生物燃料是一种经济且可持续地替代石油基生产的有吸引力的选择。设计用于生物质水解的酵母菌株的大量努力导致了工业上可应用的生物学途径。酿酒酵母基于其对系统和合成生物学工具的适应性,是一种广泛用于生物燃料生产的强大微生物平台。通过工程酿酒酵母对木质纤维素生物质进行有效微生物转化的关键挑战包括纤维素酶的异源表达,己糖和戊糖的共同发酵以及抵抗各种压力的稳定性。科学家为纤维素酵解酿酒酵母菌株开发了许多工程策略,使整合生物工艺的应用达到工业规模。将综述能够同化木质纤维素的工程酵母菌株的开发和实施的最新进展。
更新日期:2020-01-09
down
wechat
bug