当前位置: X-MOL 学术Curr. Stem Cell Res. Ther. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Uncovering the Diversification of Tissue Engineering on the Emergent Areas of Stem Cells, Nanotechnology and Biomaterials.
Current Stem Cell Research & Therapy ( IF 2.1 ) Pub Date : 2020-03-31 , DOI: 10.2174/1574888x15666200103124821
Sunil K Dubey 1 , Amit Alexander 2 , Munnangi Sivaram 1 , Mukta Agrawal 3 , Gautam Singhvi 1 , Swapnil Sharma 4 , Richa Dayaramani 5
Affiliation  

Damaged or disabled tissue is life-threatening due to the lack of proper treatment. Many conventional transplantation methods like autograft, iso-graft and allograft are in existence for ages, but they are not sufficient to treat all types of tissue or organ damages. Stem cells, with their unique capabilities like self-renewal and differentiate into various cell types, can be a potential strategy for tissue regeneration. However, the challenges like reproducibility, uncontrolled propagation and differentiation, isolation of specific kinds of cell and tumorigenic nature made these stem cells away from clinical application. Today, various types of stem cells like embryonic, fetal or gestational tissue, mesenchymal and induced-pluripotent stem cells are under investigation for their clinical application. Tissue engineering helps in configuring the stem cells to develop into a desired viable tissue, to use them clinically as a substitute for the conventional method. The use of stem cell-derived Extracellular Vesicles (EVs) is being studied to replace the stem cells, which decreases the immunological complications associated with the direct administration of stem cells. Tissue engineering also investigates various biomaterials to use clinically, either to replace the bones or as a scaffold to support the growth of stemcells/ tissue. Depending upon the need, there are various biomaterials like bio-ceramics, natural and synthetic biodegradable polymers to support replacement or regeneration of tissue. Like the other fields of science, tissue engineering is also incorporating the nanotechnology to develop nano-scaffolds to provide and support the growth of stem cells with an environment mimicking the Extracellular matrix (ECM) of the desired tissue. Tissue engineering is also used in the modulation of the immune system by using patient-specific Mesenchymal Stem Cells (MSCs) and by modifying the physical features of scaffolds that may provoke the immune system. This review describes the use of various stem cells, biomaterials and the impact of nanotechnology in regenerative medicine.



中文翻译:

探索干细胞,纳米技术和生物材料等新兴领域的组织工程多样化。

由于缺乏适当的治疗,损坏或失去能力的组织危及生命。许多传统的移植方法(例如自体移植,同种异体移植和同种异体移植)已经存在了很长时间,但是它们不足以治疗所有类型的组织或器官损伤。干细胞具有诸如自我更新和分化为各种细胞类型的独特功能,可以成为组织再生的潜在策略。然而,诸如可重复性,不受控制的繁殖和分化,特定类型细胞的分离以及致癌性等挑战使这些干细胞脱离了临床应用。如今,正在研究各种类型的干细胞,如胚胎,胎儿或妊娠组织,间充质和诱导多能干细胞的临床应用。组织工程有助于将干细胞配置为发育成所需的存活组织,从而在临床上将其用作常规方法的替代品。正在研究使用源自干细胞的细胞外囊泡(EVs)来替代干细胞,这减少了与直接施用干细胞相关的免疫学并发症。组织工程还研究了各种生物材料以用于临床,以替代骨骼或用作支架以支持干细胞/组织的生长。根据需要,存在多种生物材料,例如生物陶瓷,天然和合成的可生物降解的聚合物,以支持组织的置换或再生。像其他科学领域一样,组织工程学还结合了纳米技术来开发纳米支架,以提供和支持干细胞的生长,其环境类似于所需组织的细胞外基质(ECM)。通过使用患者特异性的间充质干细胞(MSC),并通过修饰可能激发免疫系统的支架的物理特征,组织工程也可用于免疫系统的调节。这篇综述描述了各种干细胞,生物材料的使用以及纳米技术在再生医学中的影响。通过使用患者特异性的间充质干细胞(MSC),并通过修饰可能激发免疫系统的支架的物理特征,组织工程也可用于免疫系统的调节。这篇综述描述了各种干细胞,生物材料的使用以及纳米技术在再生医学中的影响。通过使用患者特异性的间充质干细胞(MSC),并通过修饰可能激发免疫系统的支架的物理特征,组织工程也可用于免疫系统的调节。这篇综述描述了各种干细胞,生物材料的使用以及纳米技术在再生医学中的影响。

更新日期:2020-03-31
down
wechat
bug