当前位置: X-MOL 学术Med. Biol. Eng. Comput. › 论文详情
A novel method to model hepatic vascular network using vessel segmentation, thinning, and completion.
Medical & Biological Engineering & Computing ( IF 2.022 ) Pub Date : 2020-01-18 , DOI: 10.1007/s11517-020-02128-6
Xiaoyu Guo,Ruoxiu Xiao,Tao Zhang,Cheng Chen,Jiayu Wang,Zhiliang Wang

The accurate modeling of the liver vessel network structure is an important prerequisite for developing a preoperative plan for the liver. Considering that extracting liver blood vessels from patient's abdominal computed tomography(CT) images requires several manual operations, this study proposed an automatic segmentation method of liver vessels based on graph cut, thinning, and vascular combination, which can obtain a complete liver vascular network. First, the CT image was preprocessed by grayscale mapping based on sigmoid function, vessel enhancement based on Hessian filter, and denoising based on anisotropic filter to enhance the grayscale contrast between the vascular and non-vascular parts of the liver. Then, the liver vessels were initially segmented based on the improved three-dimensional graph cut algorithm. Based on the obtained liver vascular structure, the vessel centerline of the liver was then extracted by the proposed thinning algorithm that continuously traversed the foreground voxel points and iteratively deleted the simple points. Finally, the combination of vascular centerline optimization was used to predict and link the vascular centerline fractured portion. The under-segmented liver vessels were complemented based on the complete vascular centerline tree. To verify the proposed hepatic vascular segmentation and complementation algorithm, the open 3D Image Reconstruction for Comparison of Algorithm Database (3Dircadb) was applied to test and quantify the results. The results showed that the proposed algorithm can accurately and effectively segment the vascular network structure from abdominal CT images, and the proposed vascular complementation method can restore the true information of under-segmented liver vessels. Graphical abstract A novel hepatic vessel segmentation method from abdominal CT images was proposed, including graph cut algorithm, centerline extraction, and broken vessel completion. First, the graph cut algorithm was used to obtain the initial segmentation result. Then, the centerline of the initial segmentation result was extracted. Finally, the initial segmentation result was optimized through centerline analysis.
更新日期:2020-04-22

 

全部期刊列表>>
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
段炼
清华大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
电子显微学
何凤
洛杉矶分校
吴杰
赵延川
试剂库存
天合科研
down
wechat
bug