当前位置: X-MOL 学术J. Digit. Imaging › 论文详情
Automated Cardiovascular Pathology Assessment Using Semantic Segmentation and Ensemble Learning.
Journal of Digital Imaging ( IF 2.572 ) Pub Date : 2020-01-14 , DOI: 10.1007/s10278-019-00197-0
Tony Lindsey,Jin-Ju Lee

Cardiac magnetic resonance imaging provides high spatial resolution, enabling improved extraction of important functional and morphological features for cardiovascular disease staging. Segmentation of ventricular cavities and myocardium in cardiac cine sequencing provides a basis to quantify cardiac measures such as ejection fraction. A method is presented that curtails the expense and observer bias of manual cardiac evaluation by combining semantic segmentation and disease classification into a fully automatic processing pipeline. The initial processing element consists of a robust dilated convolutional neural network architecture for voxel-wise segmentation of the myocardium and ventricular cavities. The resulting comprehensive volumetric feature matrix captures diagnostic clinical procedure data and is utilized by the final processing element to model a cardiac pathology classifier. Our approach evaluated anonymized cardiac images from a training data set of 100 patients (4 pathology groups, 1 healthy group, 20 patients per group) examined at the University Hospital of Dijon. The top average Dice index scores achieved were 0.940, 0.886, and 0.849 for structure segmentation of the left ventricle (LV), myocardium, and right ventricle (RV), respectively. A 5-ary pathology classification accuracy of 90% was recorded on an independent test set using the trained model. Performance results demonstrate the potential for advanced machine learning methods to deliver accurate, efficient, and reproducible cardiac pathological assessment.
更新日期:2020-03-07

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug