当前位置: X-MOL 学术Wildlife Monogr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Habitat prioritization across large landscapes, multiple seasons, and novel areas: An example using greater sage‐grouse in Wyoming
Wildlife Monographs ( IF 4.3 ) Pub Date : 2014-09-22 , DOI: 10.1002/wmon.1014
Bradley C. Fedy 1 , Kevin E. Doherty 2 , Cameron L. Aldridge 3 , Micheal O'Donnell 4 , Jeffrey L. Beck 5 , Bryan Bedrosian 6 , David Gummer 7 , Matthew J. Holloran 8 , Gregory D. Johnson 9 , Nicholas W. Kaczor 10 , Christopher P. Kirol 5 , Cheryl A. Mandich 11 , David Marshall 12 , Gwyn Mckee 13 , Chad Olson 14 , Aaron C. Pratt 5 , Christopher C. Swanson 15 , Brett L. Walker 16
Affiliation  

Animal habitat selection is an important and expansive area of research in ecology. In particular, the study of habitat selection is critical in habitat prioritization efforts for species of conservation concern. Landscape planning for species is happening at ever‐increasing extents because of the appreciation for the role of landscape‐scale patterns in species persistence coupled to improved datasets for species and habitats, and the expanding and intensifying footprint of human land uses on the landscape. We present a large‐scale collaborative effort to develop habitat selection models across large landscapes and multiple seasons for prioritizing habitat for a species of conservation concern. Greater sage‐grouse (Centrocercus urophasianus, hereafter sage‐grouse) occur in western semi‐arid landscapes in North America. Range‐wide population declines of this species have been documented, and it is currently considered as “warranted but precluded” from listing under the United States Endangered Species Act. Wyoming is predicted to remain a stronghold for sage‐grouse populations and contains approximately 37% of remaining birds. We compiled location data from 14 unique radiotelemetry studies (data collected 1994–2010) and habitat data from high‐quality, biologically relevant, geographic information system (GIS) layers across Wyoming. We developed habitat selection models for greater sage‐grouse across Wyoming for 3 distinct life stages: 1) nesting, 2) summer, and 3) winter. We developed patch and landscape models across 4 extents, producing statewide and regional (southwest, central, northeast) models for Wyoming. Habitat selection varied among regions and seasons, yet preferred habitat attributes generally matched the extensive literature on sage‐grouse seasonal habitat requirements. Across seasons and regions, birds preferred areas with greater percentage sagebrush cover and avoided paved roads, agriculture, and forested areas. Birds consistently preferred areas with higher precipitation in the summer and avoided rugged terrain in the winter. Selection for sagebrush cover varied regionally with stronger selection in the Northeast region, likely because of limited availability, whereas avoidance of paved roads was fairly consistent across regions. We chose resource selection function (RSF) thresholds for each model set (seasonal × regional combination) that delineated important seasonal habitats for sage‐grouse. Each model set showed good validation and discriminatory capabilities within study‐site boundaries. We applied the nesting‐season models to a novel area not included in model development. The percentage of independent nest locations that fell directly within identified important habitat was not overly impressive in the novel area (49%); however, including a 500‐m buffer around important habitat captured 98% of independent nest locations within the novel area. We also used leks and associated peak male counts as a proxy for nesting habitat outside of the study sites used to develop the models. A 1.5‐km buffer around the important nesting habitat boundaries included 77% of males counted at leks in Wyoming outside of the study sites. Data were not available to quantitatively test the performance of the summer and winter models outside our study sites. The collection of models presented here represents large‐scale resource‐management planning tools that are a significant advancement to previous tools in terms of spatial and temporal resolution. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

中文翻译:

跨大景观,多个季节和新颖地区的栖息地优先排序:在怀俄明州使用更多鼠尾草的示例

动物栖息地的选择是生态学研究的重要而广阔的领域。尤其是,对于保护方面的物种,栖息地选择的研究对于栖息地优先排序工作至关重要。由于对景观尺度模式在物种持久性中的作用,加上对物种和栖息地数据集的改进,以及人类土地利用在景观上的扩大和加剧,对物种的景观规划正在以越来越大的程度进行。我们提出了一项大规模的合作计划,以开发跨大景观和多个季节的栖息地选择模型,以优先考虑某个保护性物种的栖息地。鼠尾草(Sencocercus urophasianus,以下称为鼠尾草)发生在北美西部的半干旱景观中。该物种的范围广泛的种群减少已被记录下来,根据《美国濒危物种法》,目前该物种被认为“有保证但被禁止”上市。怀俄明州预计仍然是鼠尾草种群的据点,约占剩余鸟类的37%。我们收集了14个独特的无线电遥测研究(1994-2010年收集的数据)中的位置数据,以及怀俄明州高质量,生物学相关的地理信息系统(GIS)层中的栖息地数据。我们开发了栖息地选择模型,以在整个怀俄明州为3个不同的生命阶段提供更多的鼠尾草:1)筑巢,2)夏季和3)冬季。我们在4个范围内开发了斑块和景观模型,生成了州和地区(西南,中部,东北)模型。栖息地的选择因地区和季节而异,但首选的栖息地属性通常与关于鼠尾草季节性栖息地需求的大量文献相符。在整个季节和地区中,鸟类都喜欢使用鼠尾草覆盖率更高的区域,并避免铺平道路,农业和森林区域。鸟类始终喜欢在夏季降水较高的地区,而在冬季避免崎terrain的地形。鼠尾草覆盖区的选择因地区而异,东北地区的选择范围更大,这可能是由于可用性有限,而避免在各个地区铺设柏油路是相当一致的。我们为每个模型集(季节×区域组合)选择了资源选择函数(RSF)阈值,该阈值描绘了鼠尾草的重要季节性生境。每个模型集都在研究场所范围内显示出良好的验证和区分能力。我们将嵌套季节模型应用于模型开发未包括的新区域。直接落入已确定的重要栖息地内的独立巢穴所占的百分比在新颖区域中并不太令人印象深刻(49%);但是,在重要栖息地周围包括一个500 m的缓冲区,可以捕获新区域内98%的独立巢穴位置。我们还使用了韭菜和相关的雄性高峰数量作为在用于开发模型的研究地点之外筑巢栖息地的代理。在重要的筑巢栖息地边界周围1.5公里的缓冲区中,怀俄明州研究场所以外的韭菜种群中有77%的雄性被计数。没有数据可用于定量研究我们研究地点以外的夏季和冬季模型的性能。这里介绍的模型集合代表了大规模的资源管理计划工具,在空间和时间分辨率方面是对先前工具的重大改进。2014年出版。本文是美国政府的著作,在美国属于公共领域。
更新日期:2014-09-22
down
wechat
bug