当前位置: X-MOL 学术Microfluid. Nanofluid. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Direct investigation of methane nanofluidic microstructure and system dynamics in rough silicon nanochannel
Microfluidics and Nanofluidics ( IF 2.3 ) Pub Date : 2019-10-11 , DOI: 10.1007/s10404-019-2286-y
Chuntao Jiang , Qingsheng Liu , Xuehai Wang

The microstructure and system dynamics of methane nanofluidic are important to determine the flow properties. In this study, we use non-equilibrium multiscale molecular dynamics simulation (NEMSMD) to investigate the microstructure and system dynamics of methane nanofluidic confined by rough silicon atomic walls. To capture the detailed atomic microstructure of methane moving in rough nanochannel accurately, the modification of OPLS methane fully atomic model is employed. The average number density distributions of C (H) atom, average velocity profile, velocity autocorrelation function and projection radial distribution function (XOY-, XOZ- and YOZ planes) plots give a clear observation of the impacts of different conditions (roughness, body driving force, fluid–wall interaction strength and cutoff radius) on the methane Poiseuille flow in nanochannel. The projection radial distribution functions and diffusivity appear anisotropic, and seem to be affected more significantly by roughness, fluid–wall interaction strength and cutoff radius than body driving force in the whole channel region. Moreover, the body driving force and cutoff radius also play an important role in methane nanofluidic simulation using NEMSMD. The present simulation results are very meaningful for the design of energy-saving emission reduction nanofluidic devices.



中文翻译:

直接研究粗糙硅纳米通道中甲烷纳米流体的微观结构和系统动力学

甲烷纳米流体的微观结构和系统动力学对于确定流动性质很重要。在这项研究中,我们使用非平衡多尺度分子动力学模拟(NEMSMD)来研究由粗糙的硅原子壁限制的甲烷纳米流体的微观结构和系统动力学。为了准确捕获在粗糙的纳米通道中移动的甲烷的详细原子微观结构,采用了OPLS甲烷全原子模型的改进方法。C(H)原子的平均数密度分布,平均速度分布,速度自相关函数和投影径向分布函数(XOY-,XOZ-和YOZ平面)图清晰地观察了不同条件(粗糙度,车身驱动)的影响力,纳米通道中甲烷泊瓦伊流中的流体-壁相互作用强度和截止半径)。投影的径向分布函数和扩散率似乎是各向异性的,并且似乎比整个通道区域中的主体驱动力对粗糙度,流体-壁相互作用强度和截止半径的影响更大。此外,在使用NEMSMD的甲烷纳米流体模拟中,车身驱动力和截止半径也起着重要作用。目前的仿真结果对节能减排纳米流体装置的设计具有重要意义。人体驱动力和截止半径在使用NEMSMD的甲烷纳米流体模拟中也起着重要作用。目前的仿真结果对节能减排纳米流体装置的设计具有重要意义。人体驱动力和截止半径在使用NEMSMD的甲烷纳米流体模拟中也起着重要作用。目前的仿真结果对节能减排纳米流体装置的设计具有重要意义。

更新日期:2019-10-11
down
wechat
bug