当前位置: X-MOL 学术Transp Porous Media › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the Interfacial Flow Over Porous Media Composed of Packed Spheres: Part 2-Optimal Stokes–Brinkman Coupling with Effective Navier-Slip Approach
Transport in Porous Media ( IF 2.7 ) Pub Date : 2020-03-01 , DOI: 10.1007/s11242-020-01398-w
Jin Gang Lu , Wook Ryol Hwang

The Stokes–Brinkman coupling has been employed to investigate the flow through porous media composed of packed spheres. By matching the slip velocity using the Navier-slip condition, optimal values of the effective viscosity in the continuous stress condition and of the stress jump coefficient in the stress jump condition could be accurately determined. The correlations between the slip length (which has been accurately determined in Part 1) and the effective viscosity as well as the stress jump coefficient have been specified. The accuracy of these two optimal parameters (i.e., the effective viscosity and stress jump coefficient) has been assessed by comparing the velocity profiles in both the fluid and porous regions obtained from the Stokes–Brinkman coupling, with those obtained from the corresponding direct simulations. It is observed that the stress jump condition with the optimal stress jump coefficient yields a superior prediction in the velocity field. The optimal effective viscosity decreases as the solid volume fraction increases, whereas the stress jump coefficient increases with the solid volume fraction. By selecting the optimal parameters, the Stokes–Brinkman coupling with both the continuous stress condition and stress jump condition is applied to solve two example flow problems: a stick–slip–stick flow and a pressure-driven flow in a rectangular channel. Both the stress conditions in the Stokes–Brinkman coupling exhibit good performances in reproducing the velocity fields within the entire domain.

中文翻译:

在由填充球组成的多孔介质上的界面流动:第 2 部分 - 最佳 Stokes-Brinkman 耦合与有效的 Navier-Slip 方法

Stokes-Brinkman 耦合已被用于研究通过由填充球组成的多孔介质的流动。通过使用纳维滑移条件匹配滑移速度,可以准确地确定连续应力条件下的有效粘度和应力跳跃条件下的应力跳跃系数的最佳值。滑移长度(已在第 1 部分中准确确定)与有效粘度以及应力跳跃系数之间的相关性已被指定。通过比较从 Stokes-Brinkman 耦合获得的流体和多孔区域的速度分布与从相应的直接模拟获得的速度分布,已经评估了这两个最佳参数(即有效粘度和应力跳跃系数)的准确性。观察到具有最佳应力跳跃系数的应力跳跃条件在速度场中产生了优越的预测。最佳有效粘度随着固体体积分数的增加而降低,而应力跳跃系数随着固体体积分数的增加而增加。通过选择最佳参数,应用 Stokes-Brinkman 耦合连续应力条件和应力跳跃条件来解决两个示例流动问题:矩形通道中的粘滑粘流和压力驱动流。Stokes-Brinkman 耦合中的两种应力条件在再现整个域内的速度场方面都表现出良好的性能。最佳有效粘度随着固体体积分数的增加而降低,而应力跳跃系数随着固体体积分数的增加而增加。通过选择最佳参数,应用 Stokes-Brinkman 耦合连续应力条件和应力跳跃条件来解决两个示例流动问题:矩形通道中的粘滑粘流和压力驱动流。Stokes-Brinkman 耦合中的两种应力条件在再现整个域内的速度场方面都表现出良好的性能。最佳有效粘度随着固体体积分数的增加而降低,而应力跳跃系数随着固体体积分数的增加而增加。通过选择最佳参数,应用 Stokes-Brinkman 耦合连续应力条件和应力跳跃条件来解决两个示例流动问题:矩形通道中的粘滑粘流和压力驱动流。Stokes-Brinkman 耦合中的两种应力条件在再现整个域内的速度场方面都表现出良好的性能。应用具有连续应力条件和应力跳跃条件的 Stokes-Brinkman 耦合来解决两个示例流动问题:矩形通道中的粘-滑-粘流和压力驱动流。Stokes-Brinkman 耦合中的两种应力条件在再现整个域内的速度场方面都表现出良好的性能。应用具有连续应力条件和应力跳跃条件的 Stokes-Brinkman 耦合来解决两个示例流动问题:矩形通道中的粘-滑-粘流和压力驱动流。Stokes-Brinkman 耦合中的两种应力条件在再现整个域内的速度场方面都表现出良好的性能。
更新日期:2020-03-01
down
wechat
bug