当前位置: X-MOL 学术Acta Biomater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Micro/nano-hierarchical scaffold fabricated using a cell electrospinning/3D printing process for co-culturing myoblasts and HUVECs to induce myoblast alignment and differentiation.
Acta Biomaterialia ( IF 9.4 ) Pub Date : 2020-03-03 , DOI: 10.1016/j.actbio.2020.02.042
Miji Yeo 1 , GeunHyung Kim 1
Affiliation  

Human skeletal muscle is composed of intricate anatomical structures, including uniaxially arranged myotubes and widely distributed blood capillaries. In this regard, vascularization is an essential part of the successful development of an engineered skeletal muscle tissue to restore its function and physiological activities. In this paper, we propose a method to obtain a platform for co-culturing human umbilical vein endothelial cells (HUVECs) and C2C12 cells using cell electrospinning and 3D bioprinting. To elaborate, on the surface of mechanical supporters (polycaprolactone and collagen struts) with a topographical cue, HUVECs-laden alginate bioink was uniaxially electrospun. The electrospun HUVECs showed high cell viability (90%), homogeneous cell distribution, and efficient HUVEC growth. Furthermore, the myoblasts (C2C12 cells), which were seeded on the vascularized structure (HUVECs-laden fibers), were co-cultured to facilitate myoblast regeneration. As a result, the scaffold that included myoblasts and HUVECs represented a high degree of the myosin heavy chain (MHC) with striated patterns and enhanced myogenic-specific gene expressions (MyoD, troponin T, MHC and myogenin) as compared to the scaffold that included only myoblasts. STATEMENT OF SIGNIFICANCE: Cell electrospinning is an advanced electrospinning method that improves cell-matrix interactions by embedding cells directly into micro/nanofibers. Here, cell electrospinning was employed to achieve not only the homogeneous human umbilical vein endothelial cells (HUVECs) distribution with a high cell-viability (~90%), but also highly aligned topographical cue. Moreover, the uniaxially micropatterned PCL/collagen struts as a physical support were generated using three-dimensional (3D) printing, and was covered with HUVEC-laden micro/nanofibers. This hierarchical structure provided meaningful mechanical stability, homogeneous cell distribution, and HUVEC transformation into a narrow, elongated structure. Furthermore, the myoblasts (C2C12 cells) were seeded on the HUVECs-laden fibers and cocultured to facilitate myogenesis. In brief, a myosin heavy chain with striated patterns and enhanced myogenic specific gene expressions were represented.

中文翻译:

使用细胞静电纺丝/ 3D打印工艺制造的微/纳米级支架,用于共培养成肌细胞和HUVEC,以诱导成肌细胞排列和分化。

人的骨骼肌由复杂的解剖结构组成,包括单轴排列的肌管和分布广泛的血液毛细血管。在这方面,血管化是工程骨骼肌组织成功恢复其功能和生理活动的成功发展的重要组成部分。在本文中,我们提出了一种使用细胞静电纺丝和3D生物打印技术获得用于共同培养人脐静脉内皮细胞(HUVEC)和C2C12细胞的平台的方法。详细地说,在带有地形提示的机械支持物(聚己内酯和胶原蛋白支撑物)的表面上,单轴电纺制载有HUVECs的藻酸盐生物墨水。电纺HUVEC表现出高细胞活力(90%),均匀的细胞分布和有效的HUVEC生长。此外,成肌细胞(C2C12细胞)将它们接种在血管化结构(载有HUVECs的纤维)上,进行共培养以促进成肌细胞的再生。因此,与包括成肌细胞和HUVEC的支架相比,包括成肌细胞和HUVEC的支架具有高度的肌球蛋白重链(MHC),具有横纹图案和增强的成肌特异性基因表达(MyoD,肌钙蛋白T,MHC和肌生成素)。只有成肌细胞。重要性说明:细胞静电纺丝是一种先进的静电纺丝方法,通过将细胞直接嵌入微纤维/纳米纤维中来改善细胞-基质相互作用。在这里,细胞静电纺技术不仅可以实现具有高细胞活力(〜90%)的均匀人脐静脉内皮细胞(HUVEC)分布,而且还可以实现高度对齐的地形提示。此外,使用三维(3D)打印生成单轴微图案化PCL /胶原蛋白支撑物作为物理支撑,并覆盖满HUVEC的微纤维/纳米纤维。这种分层结构提供了有意义的机械稳定性,均匀的细胞分布以及HUVEC转变为狭窄的细长结构。此外,将成肌细胞(C2C12细胞)接种在富含HUVECs的纤维上,并共培养以促进成肌。简而言之,代表了具有横纹图案和增强的成肌特异性基因表达的肌球蛋白重链。细长的结构。此外,将成肌细胞(C2C12细胞)接种在富含HUVECs的纤维上,并共培养以促进成肌。简而言之,代表了具有横纹图案和增强的成肌特异性基因表达的肌球蛋白重链。细长的结构。此外,将成肌细胞(C2C12细胞)接种在富含HUVECs的纤维上,并共培养以促进成肌。简而言之,代表了具有横纹图案和增强的成肌特异性基因表达的肌球蛋白重链。
更新日期:2020-03-04
down
wechat
bug