当前位置: X-MOL 学术Int. J. Mech. Sci. › 论文详情
Effects of strain stiffening and electrostriction on tunable elastic waves in compressible dielectric elastomer laminates
International Journal of Mechanical Sciences ( IF 4.134 ) Pub Date : 2020-03-04 , DOI: 10.1016/j.ijmecsci.2020.105572
Yingjie Chen; Bin Wu; Yipin Su; Weiqiu Chen

This paper presents an electromechanical analysis of the nonlinear static response and the superimposed small-amplitude wave characteristics in an infinite periodic compressible dielectric elastomer (DE) laminate subjected to electrostatic excitations and prestress in the thickness direction. The enriched Gent material model is employed to account for the effects of strain stiffening and electrostriction of the DE laminate. The theory of nonlinear electroelasticity and related linearized incremental theory are exploited to derive the governing equations of nonlinear response and the dispersion relations of incremental shear and longitudinal waves. Numerical results reveal that the snap-through instability of a Gent DE laminate resulting from geometrical and material nonlinearities can be used to achieve a sharp transition in the position and width of wave band gaps. Furthermore, the influence of material properties (including Gent constants, the second strain invariant and electrostrictive parameters) and that of prestress on the snap-through instability and the electrostatic tunability of band gaps for both shear and longitudinal waves are discussed in detail. The electrostrictive effect and prestress are beneficial to stabilizing the periodic DE laminate. Depending on whether the snap-through instability occurs or not, a continuous variation or a sharp transition in wave band gaps can be realized by varying the electric stimuli. Our numerical findings are expected to provide a solid guidance for the design and manufacture of soft DE wave devices with tunable band structures.
更新日期:2020-03-04

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
X-MOL
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug