当前位置: X-MOL 学术Transp. Res. Part C Emerg. Technol. › 论文详情
Trip-based graph partitioning in dynamic ridesharing
Transportation Research Part C: Emerging Technologies ( IF 5.775 ) Pub Date : 2020-03-03 , DOI: 10.1016/j.trc.2020.02.008
Amirmahdi Tafreshian; Neda Masoud

A dynamic ridesharing system is a platform that connects drivers who use their personal vehicles to travel with riders who are in need of transportation, on a short notice. Since each driver/rider may have several potential matches, to achieve a high performance level, the ridesharing operator needs to make the matching decisions based on a global view of the system that includes all active riders and drivers. Consequently, the ride-matching problem that needs to be solved can become computationally expensive, especially when the system is operating over a large region, or when it faces high demand levels during certain hours of the day. This paper develops a graph partitioning methodology based on the bipartite graph that arises in the one-to-one ride-matching problem. The proposed method decomposes the original graph into multiple sub-graphs with the goal of reducing the overall computational complexity of the problem as well as providing high quality solutions. We further show that this methodology can be extended to more complex ride-matching problems in a dynamic ride-sharing system. Using numerical experiments, we showcase the advantages of the new partitioning method for different forms of ride-matching problems. Moreover, a sensitivity analysis is conducted to show the impact of different parameters on the quality of our solution.
更新日期:2020-03-04

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
伊利诺伊大学香槟分校
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug